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Introduction

1Password Security Design, Appendix E describes what I call a Cat in the
Middle Attack (CitM) as it involves the nefarious Mr. Talk. Historically,
these have been called “Man in the Middle” (MitM), and more recent par-
lance uses the term “Adversary in the Middle” (AitM).1

Today we go into a deeper dive of the math and algorithms involved.
Chapter 1 reiterates that story with more detail, including bits of a

Python session showing the steps. Chapter 2 details the algorithms used to
perform the calculations in chapter 1. If chapter 3 existed, it would explain
why the algorithms in chapter 2 produce the results we see in chapter 1.

I have entirely failed to pitch this at a consistent level of experience with
reading code and comfort with mathematical abstractions. This leaves it up
to you to decide what to skip over. The bits of Python code are included
to help clarify the text, but that will only work for some people. There
are certainly parts of the mathematical discussion that can be glossed over.
depending on your interests.

In general, this document should be useful to you if you are willing to
accept that there are parts that won’t make sense.

There are a few places where code details are not presented in this doc-
ument and you are referred to the source. The source lives at https://
gitlab.1password.io/security/sec-team-training/-/tree/main/2021-10-29.

1In addition to the obvious improvement in terminology, this avoids confusion with a
“Meet in the Middle” attack, which is something else entirely.
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Chapter 1

A cat in the middle

Code preliminaries
We use constructs here that were introduced in Python 3.9, so we need to
run a Python version check before continuing, along with some other cruft
that I will skip here but you can see by inspecting the source files.

We will be making use of the rsa.py module that is detailed in chapter 2.

import rsa

1.1 Critters and their keys
This is a story of the dogs Patty and Molly and the neighbor’s evil cat,
Mr. Talk. Each of these have a name and an RSA key pair. Critters get
set up by the __init()__ method shown in listing 1.1.

Listing 1.1 Critters are initialized with their names and key pairs
class Critter:

"""A Critter has a name and a key pair"""
def __init__(self, name: str, key: rsa.KeyPair) -> None:

self.name = name
self._keypair: rsa.KeyPair = key
self.pub_key = self._keypair.pub_key()

Encrypting something to a Critter is just using the public key to encrypt.
Decrypting requires the Critter’s key pair, which includes the secret part of
the key, The methods encrypt_to() and decrypt() are shown in code
listing 1.2.
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Listing 1.2 Methods for a Critter to encrypt and decrypt
def encrypt_to(self, ptext: int) -> int:

return self.pub_key.encrypt(ptext)

def decrypt(self, ctext: int) -> int:
return self._keypair.decrypt(ctext)

1.1.1 Patty We can use rsa.KeyPair() to create an RSA key pair from two primes. We
(or Patty) can create a key pair with the primes 107 and 151 with something
like rsa.KeyPair(107, 151).1

patty = Critter("Patty", rsa.KeyPair(107, 151))
print(f"Patty's public key: {patty.pub_key}")

Patty's public key: exponent: 17, modulus: 16157

Let’s suppose we want to encrypt the message 1234 to Patty.

m1 = 1234
c = patty.encrypt_to(m1)
print(f"Encrypting the message {m1} to Patty"\

f" gives us the ciphertext {c}.")

Encrypting the message 1234 to Patty gives us the ciphertext 8900.

Patty, using her private key, can decrypt the message.

m2 = patty.decrypt(c)
print(f"Patty decrypts {c} as {m2}")

Patty decrypts 8900 as 1234

1.2 Sharing a vault
We will start with Patty sharing a vault key with Molly. Getting the en-
crypted vault key from Patty to Molly will involve a server as will Patty
getting Molly’s public key.

1.2.1 The server Our server is going to keep track of users and their public keys. It will also
pass encrypted messages from one user to another. Quite crucially it will
never have the ability to get at any of the users’ private keys.

1In real life the primes would be much larger and the would be generated in ways that
give us confidence that they are prime and that the have the right properties with respect
to each other and to the public exponent. The public exponent is introduced in chapter 2.
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Listing 1.3 A Service maintains a list of users and message
class Service:

def __init__(self) -> None:
self._users: dict[str, rsa.PubKey] = {}
self._messages: dict[str, int] = {}

Team members will be able to post and get messages and they will be able
to post their public keys and get others’ public keys. And so we will create
four methods talking to a Service: post_msg(), get_msg(), post_key(),
and get_key(). They are not shown here because so what we can focus on
the story.

A real service would make sure that the critter posting a key or retrieving
a message is who they say they are. Pretend that that is the case here. It
isn’t, but let’s pretend.

We will set up a service for Molly and Patty to talk to. Let’s call it ‘b5’.

b5 = Service()

Patty can now upload her public key to the server using the post_key()
method.

b5.post_key(patty.name, patty.pub_key)

We can then look up Patty’s public key from the server using the get_key()
method and print it.

print(f"Patty's public key: {b5.get_key('Patty')}")

Patty's public key: exponent: 17, modulus: 16157

1.2.2 Molly Molly is a member of Patty’s family. And when Molly sets up her account,
she creates her identity and adds her public key to the server.

molly = Critter("Molly", rsa.KeyPair(97, 43))
b5.post_key(molly.name, molly.pub_key)

The prime numbers, 97 and 43, that Molly used to create her key pair
get multiplied together to create her public modulus 𝑁 . They are also used
to compute (as described in gory detail is chapter 2) a secret decryption
exponent called 𝑑.
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print(f"Molly's public modulus: {molly.pub_key.N}")
print(f"Molly's decryption exponent: {molly._keypair.d}")

Molly's public modulus: 4171
Molly's decryption exponent: 593

Suppose that Patty has a vault key, 1313, which she would like to share
with Molly. She will get Molly’s public key from the server and encrypt
something to it.

vault_key = 1313
c = b5.get_key('Molly').encrypt(vault_key)

print(f"The encrypted vault key is {c}.")

The encrypted vault key is 530.

Patty gives the encrypted data to the server to pass to Molly.

b5.post_msg('Molly', c)

Molly signs in and checks to see if b5 has anything for her. She gets it
and decrypts it.

ctext_from_patty = b5.get_msg('Molly')
vk_from_patty = molly.decrypt(ctext_from_patty)

print(f"Ctext ({ctext_from_patty}) decrypts to {vk_from_patty}.")

Ctext (530) decrypts to 1313.

Throughout all of this the B5 server has neither Molly’s nor Patty’s
private keys, and the vault keys that pass through the server are encrypted
with someone’s public key.

1.3 The Cat in the Middle
Suppose that Mr. Talk has gained control of the server. We represent this
unfortunate state of affairs by allowing Mr. Talk to directly manipulate
private2 server objects such as _users and _messages.

First, Mr. Talk replaces Molly’s public key in the server with one of his
own. He does keep a copy of Molly’s real public key,

2Here we use “private” to refer to the programming concept of access to methods and
fields within an object. In the sense of keys, our server only ever deals with public keys,
but it does have provide fields in which it keeps those public keys.

Python does not have or enforce any formal mechanisms to establish private methods
and fields, but there is a convention of giving names beginning with a single underscore
to those that should be considered private.
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mr_talk = Critter("Mr. Talk", rsa.KeyPair(47, 89))
molly_real_pub_key = b5.get_key('Molly')
b5._users['Molly'] = mr_talk.pub_key

Now if someone asks for Molly’s public key from the server they get 4183
instead of 4171.

Once again, Patty wishes to share a vault key with Molly. This vault
key is 1729. She fetches what she believes to be Molly’s public key from
the server and encrypts this vault key with it. She then sends to encrypted
vault key to the server.

vault_key = 1729
c = b5.get_key('Molly').encrypt(vault_key)
b5.post_msg('Molly', c)

print(f"The encrypted vault key is {c}.")
print(f"But it was encrypted with {b5.get_key('Molly').N}.")

The encrypted vault key is 2016.
But it was encrypted with 4183.

Mr. Talk is able to decrypt the ciphertext because it was really encrypted
using the public key modulus 4183, for which he has the corresponding secret
parts. In this case, the decryption exponent corresponding to that public
key is 1905.

vk = mr_talk.decrypt(c)
print(f"Mr. Talk learns that the vault key is {vk}")

Mr. Talk learns that the vault key is 1729

Mr. Talk then encrypts the vault key with Molly’s real public key, and
has the server hold that.

c = molly_real_pub_key.encrypt(vk)
b5._messages['Molly'] = c

Now the ciphertext waiting for Molly (2826) is ecrypted with Molly’s
real key (4171). and so when Molly retrieves it as before nothing is amiss.
She can decrypt it and get the vault key that was shared with her.

ctext_from_patty = b5.get_msg('Molly')
vk_from_patty = molly.decrypt(ctext_from_patty)

print(f"Ctext ({ctext_from_patty}) decrypts to {vk_from_patty}.")
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Ctext (2826) decrypts to 1729.

Mr. Talk never had the ability to learn anyone’s private keys other than
his own. From Patty’s and Molly’s points of views, this vault key sharing
went perfectly smoothly. Yet a malicious actor, with substantial control of
the server, was able to intercept and decrypt the vault key.

1.4 Not just a public key problem
The problem illustrated by that story is real, serious, and the subject of
much attention when considering public key encryption. But it is a good
kind of problem to have when considering the alternative. Symmetric key
encryption has the same problem but also has so many other problems with
key distribution that this one of authenticating keys gets lost.

In the story above, Patty would need to know that the key she gets really
comes from Molly; but however that is done, it does not matter if anyone
eavesdrops on that. Furthermore, Molly does not need to know that she is
talking to Patty when it comes to publishing her key,

Symmetric key distribution requires that mutual authentication. If Patty
and Molly were setting themselves up to use a symmetric key and performing
symmetric encryption, both Patty and Molly would need to prove to the other
who they are before they could exchange keys. After that, the would still
use public key encryption to make sure that their exchange of a symmetric
key is safe against eavesdroppers.

Public key encryptions solves so many problems that we can get to the
point where we we can concerned about the Cat in the Middle problem.
So while the Cat in the Middle problem is a real problem for public key
systems, it is also a problem from symmetric key encryption.
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Chapter 2

Toy RSA in Python

In the previous chapter we ran through some examples of public key encryp-
tion. Now we turn to the computations needed to make it happen using the
RSA algorithm. This section is not fully self-explanatory, There are going to
be parts that you are not going to understand unless you know most of this
already. If you are uncomfortable with that stop here, but if you continue
take it easy.

This is not for anything that might ever be used or copied to something
that might ever be used for real data. It is for illustrating basics of the RSA
algorithm and GCD algorithms. Much more is needed to actually use RSA
safely.

Code preliminaries
The file that I am editing as I write this is the source for both the Python
code and the PDF you are reading, so we have to get some stuff into the
Python file we are creating. We will also be creating custom __str__()
methods, but those aren’t made visible in this document.

We need to be able to handle Tuples, as we will be passing around pairs
of numbers. And for reasons1 discussed later we will want some matrix
manipulation tools.

Listing 2.1 Imports
from typing import Tuple
import numpy as np

1Not all reasons are good reasons.
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2.1 Math
Learning math is like learning to play music, you can’t really become com-
fortable with it without practice.2 I can, and will, give a brief introduction
to the math needed for what follows in this chapter. It really is quite acces-
sible, using nothing more than the arithmetic taught in grade school, but it
puts a twist on it. It is up to you do decide how much practice you want to
do, which will influence how much you get out of what you are reading. You
should be able to get some real value from this chapter if you don’t practice
or gain some fluency in modular arithmetic, but I don’t know the extent to
which things will come together.

2.1.1 Numbers
God created the whole numbers. All the rest are
the work of man.

Leopold Kronecker

For technical reasons, we will sometimes need to talk about integers3

instead of whole numbers. Integers are the whole numbers, zero, and the
negatives of whole numbers. For historical reasons the set of integers is
written ‘ℤ’. (That notation may look fancy, but it is just from the German
word for number.) And we can slightly more formally say

ℤ = {… , −3, −2 − 1, 0, 1, 2, 3, …} (2.1)

Indeed, in much of what follows when I use the word “numbers” I am
just talking about integers. There may be exceptions, but those should be
clear from the context.

2.1.2 Remainders of the day Suppose it is Friday, and someone asks you what day of the week it will
be in 7 days. You should be able to quickly determine that that is also
Friday without having to count out the days. Seven days from your Friday
is exactly one week in the future, and is also a Friday. Once you realize this,
you should easily be able to answer if asked about 14 days or 28 days. Also

2It has become fashionable in some circles to criticize homework in primary and sec-
ondary education. But Math, Music, and Reading require practice well outside the typical
classroom time. This does not mean that I don’t sympathize with many of the criticisms
of homework, but we must recognize cases in which it, or something like it, is necessary.

3Computer programming languages often have what they call “integer type,” but with
rare exceptions they are limited in size. When we talk about integers in Mathematics
(including the Cryptography branch of Mathematics) we mean integers in the unlimited
mathematical sense.
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you should be able to see that 7000 days from Friday will also be a Friday.
(If you don’t yet realize this, then practice with counting or using a calendar
showing a month view working for 7, 14, and 28 days. Remember not to
count the Friday you start on.)

If asked on a Friday, then any multiple of seven days from then will also
be a Friday. Now suppose you are asked about eight days ahead of that
Friday. You know that seven days ahead will be another Friday, and eight is
one more than seven, so it will be one day after a Friday. It will Saturday.
(If this isn’t clear to you, go to a calendar that shows multiple weeks. Pick
a Friday. Go seven days ahead to the next Friday and go one more day. Do
this starting on other days of the week, going seven days ahead and then
one more. Do not count the day you start on.)

Think not just about eight days ahead of some Friday but also about 15,
22, 29, and 7001 ahead. All of those are going to be a Saturday. And all of
those numbers have a remainder of 1 when divided by 7.

Let’s assign a number of the days of the week, starting with Sunday as 9
through Saturday as 6. Monday is 1, Tuesday is 2, and so on. In this scheme
Friday is given the number 5. Now we will go over the same questions about
days of the week, but using this way of numbering the days, dividing by 7
and looking at the remainder.

Friday (day 5) plus 7 is 12. When we divide 12 by 7 we get a remainder
of 5, and 5 is our number from Friday. 5 + 21 = 26. And when we divide
26 by 7 we get a remainder of 5. 5 + 7000 = 7005, and when we divide 7005
by 7 we get a remainder of 5. These are all Friday.4

In our system, Saturday is given the number 6. If we are asked for one
day from Friday, we have 5 + 1 = 6, which gets the Saturday we expect. If
we are asked about eight days from our Friday, we have 5 + 8 = 13. When
we divide 13 by 7, we get a remainder of 6. When we are asked about 7001
days from our Friday, we get 5 + 7001 = 7006. When we divide 7006 by 7
we get a remainder of 6, which is a Saturday.

There is a really useful shortcut available. We can compute remainders
earlier so that we get to work with smaller numbers. Instead of adding 5
+ 7001 and then taking the remainder when divided by 7, we can take the
remainder first. When we divide 7001 by 7 the remainder is 1. So we can
just compute 5 + 1 = 6 to get us to a Saturday. This trick of reducing some
of numbers in a computation early becomes especially hand when we move
on to multiplication instead of addition.

4If I were to waste enough time learning how to embed a video in a PDF using TEX
you would now be watching a Katy Perry video.
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Modular notation Modular arithmetic is just ordinary arithmetic, but focuses on the remainder
of whole number division. In the examples above we have been doing every-
thing in terms of remainders when divided by 7. That is, we did all of the
arithmetic “modulo 7”. And we can refer to seven as the “modulus” in those
examples. When all of the arithmetic for some mathematical expression is
to be done modulo 7, we would write “(mod7)”.

Using this notation and our numbering scheme for the days of the week,
we would express the 7001 days from a Friday (5) as equation 2.2

6 ≡ 5 + 7001 (mod 7) (2.2)

There are many Fridays and Saturdays, but we aren’t interested in which
ones or how many weeks ahead (or behind) they might be. This is because
we have only been asked which day of the week it will be, not how many
weeks or in which particular week that day is. From our point of view for
our computations, all Saturdays are equivalent to each other, even if they
are in different weeks. This is why we use the congruence symbol ‘≡’ instead
of the equal sign in equation 2.2.

This notation and math should be sufficient for working through how to
encrypt with a public key. So you can just skip ahead to section 2.3 if you
don’t want to think about private keys and decryption. Of course you will
need to jump back here when you do want to have a sense of what is going
on with private keys.

2.1.3 Division We can say that 11 divided by 4 is 2.75, but that is not the kind of division
we will be doing throughout. Instead we want to say that 4 goes into 11
twice with a remainder of 3. Some of the terminology that we will use is
listed in table 2.1

We will make some use of being able to say whether some integer divides
another. Here that means divides with no remainder:

• 5 divides 10 because 2 × 5 = 10.

• 1 divides any integer.

• 5 divides 5 because 1 × 5 = 5.

• 5 does not divide 12 because there is no integer we can multiply 5 by
to get 12.

There is an unfortunate ambiguity about the word “divisor.” When
writing out a division expression, like 11/4 we call 4 the divisor. But we

13



Term Description in “11/4 = 2 × 4 + 3”

Dividend The thing we are dividing 11
Divisor What we are dividing the dividend

by. (In the expression 11/4 we say
that 4 is the divisor, but in general 4
is not a divisor of 11 because that
division leaves a remainder.)

4

Quotient The whole number amount of times
the divisor goes into the dividend

2

Remainder The amount left over between the
dividend by the division

3

Divides We say “𝑎 divides 𝑏” when there
there is no remainder of 𝑏/𝑎. 4 does
not divide 11, but 4 does divide 12.

False

Table 2.1: Quotients, Remainders. Dividends and Divisors with example of
11/4 = 2(4) + 3

will also use the word “divisor” to mean something that you can divide by
without leaving a remainder. So 5 is not a divisor of 12, but 5 is a divisor
of 10. 20 is a divisor of 80, but 20 is not a divisor of 85.

The fancy way of defining this is to say that 𝑏 is a divisor of 𝑎 (or 𝑏
divides 𝑎 if and only if there is a number 𝑞 such that 𝑎 = 𝑞𝑏 and 𝑎, 𝑏, and 𝑞
are integers. So 5 divides 10 because there is a number, the quotient q, such
that 5𝑞 = 10. In that instance 𝑞 is 2. But 5 is not a divisor of 12, because
there is no quotient 𝑞 such that 5𝑞 = 12. (Remember that we are restricting
ourselves to integers, so 2.4 doesn’t count as a possible quotient.)

2.2 Greatest Common Divisor
The greatest common divisor, gcd, of a set of numbers is the largest number
that divides the numbers. Consider the numbers 12 and 30. Let’s look at
the divisors of each. The divisors of 12 are 1, 2, 4, 4, 6 and 12. The divisors
of 30 are 1, 2, 3, 5, 6, 10, 15, and 30. The divisors that they have in common
are 1, 2, 3, and 6. And the greatest (largest) of those common divisors of
12 and 30 is 6. And so we would write something like “gcd(12, 30) = 6” to
say “the greatest common divisor of 12 and 30 is 6.”

In example 2.1 we listed all of the divisors of 12 and all of the divisors

14



Step: Action Result of Action
Start: Seeking gcd(12, 30)

1: Find all divisors of 12 1, 2, 3, 4, 6, 12
2: Find all divisors of 30 1, 2, 3, 5, 6, 10, 15, 30
3: Find common divisors 1, 2, 3, 6
4: Find the largest of the common divisors 6

Example 2.1: Computing gcd(12, 30) with divisors

of 30, and then found the largest divisor they have in common to be 6.
That is a fine way to do things for small numbers where it is easy to find
all of the divisors. It is probably the method you were taught ages ago5

when learning how to simplify fractions with the GCD possibly called the
“greatest common denominator” or “greatest common factor.” If you were
required to simplify, say, 12

30 you would find the greatest common factor of 12
and 30 to be 6, and then divide both 12 and 30 by 6 to give you 2

5 as the
simplified fraction.

2.2.1 Integer division in
Python

Consider doing integer division of 23 by 5. We are not interested in a floating
point answer of something like 4.6. Instead we are interested statements like
23 divided by 5 has a quotient of 4 and a remainder of 3. Another way of
saying that is 23 = 5 × 4 + 3. We will sometimes use 𝑞 for quotient and 𝑟
for remainder. Getting at the quotient and remainder (or both) is done in
python with //, %, and divmod().

So, for example, 23 // 5 is 4; 23 % 5 is 3; and divmod(23, 5) is (4,
3). When we just need the quotient we will use //. When we just need the
remainder we will use %. When we need both we will use divmod().

2.2.2 Computing the GCD In example 2.1 we listed all of the divisors of 12 and all of the divisors of 30,
and then found the largest divisor they have in common. That is a fine way
to do things for small numbers where it is easy to find all of the divisors,
but it is not practical for big numbers where finding all of the divisors is
hard. A great deal of computation is hidden in the “find all the divisors of
𝑛” steps of example 2.1. Instead, we will use (variations on) the Euclidean
Algorithm.

The oldest known algorithm for finding the gcd was described by Euclid
more than 2300 years ago. It is also the algorithm that is used today. The
gist of it is that when looking for the GCD of two numbers, is that you keep

5Well it was ages ago for me. You, dear reader, are almost certainly younger than I
am.
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Step: Action Result of Action
𝑎 𝑏 𝑎 = 𝑏?

Start: Seeking gcd(5, 20) 5 20 No
1: Subtract smaller from larger, and set the

latter to the this result. 𝑏 = 20 − 5
5 15 No

2: As before (𝑏 is still the larger) 𝑏 = 15 − 5 5 10 No
3: As before (𝑏 is still the larger) 𝑏 = 10 − 5 5 5 Yes
5: 𝑎 = 𝑏, so 𝑎 (or equivalently 𝑏) is our

answer
Return 5

Example 2.2: Computing gcd(5, 20)

Step: Action Result of Action
𝑎 𝑏 𝑎 = 𝑏?

Start: Seeking gcd(12, 30) 12 30 No
1: Subtract smaller from larger, and set the

latter to the this result. 𝑏 = 30 − 12
12 18 No

2: As before (𝑏 is still the larger)
𝑏 = 18 − 12

12 6 No

3: As before, but 𝑎 is now the larger we
subtract 𝑏 from 𝑎 𝑎 = 12 − 6

6 6 Yes

4: 𝑎 = 𝑏, so 𝑎 (or equivalently 𝑏) is our
answer

Return 6

Example 2.3: Computing gcd(12, 30) using the Euclidean Algorithm

subtracting the smaller from the larger until they are both the same.
A few examples (with small numbers) will probably make more sense of

that.
For our first example, let’s take a really simple of of looking for the

greatest common divisor of 5 and 20. In more mathy notation we are looking
for gcd(5, 20).

In example 2.2 we get the answer 5. Five divides 5, and five divides
20, so it is a common divisor. And unless you want a proof that this algo-
rithm works, you will have to take it on authority of those who have worked
through the proof that it is also the greatest common divisor.

Now let’s look at a slightly more complicated example in which we want
to use the Euclid’s algorithm to find gcd(12, 30). The steps are spelled out
in example 2.3.
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Step: Action Result of Action
𝑎 𝑏 𝑎 = 𝑏?

Start: Seeking gcd(9, 22) 9 22 No
1: Subtract smaller from larger, and set the

latter to the this result. 𝑏 = 22 − 9
9 13 No

2: 𝑏 = 13 − 9 9 4 No
3: Now 𝑎 is larger. 𝑎 = 9 − 4 5 4 No
4: 𝑎 = 5 − 4 1 5 No
5: 𝑎 is smaller (again). 𝑏 = 5 − 1 1 4 No
6: 𝑏 = 4 − 1 1 3 No
7: 𝑏 = 3 − 1 1 2 No
8: 𝑏 = 2 − 1 1 1 Yes
9: 𝑎 = 𝑏, so 𝑎 (or equivalently 𝑏) is our

answer
Return 1

Example 2.4: Computing gcd(9, 22). When there is no common divisor
greater than 1, the two numbers are coprime.

Now let’s try this for gcd(9, 22) as shown in example 2.4.
When the gcd of two numbers is 1, as it is in example 2.4, it means that

nothing larger than 1 divides both numbers. We call such pairs of numbers
“coprime” or “relatively prime” to each other.

2.2.3 Let a computer do it It really is a good idea to get a sense of how the Euclidean Algorithm
works, and so I strongly recommend that you work through the examples
given and perhaps a few more of your own devising, but computers were
invented for a reason, and this is one of them. Remember, however, that
these are all toy implementations meant to illustrate the core concepts of
the algorithms. Code for handling special cases (such as negative number
input) is not included.

Listing 2.2 shows a function for doing this in Python.

Listing 2.2 Euclid’s Algorithm (with repeated subtraction)
def gcd(a: int, b: int) -> int:

"""Greatest Common Divisor: Euclid's Algorithm"""
while a != b:

if a > b: a = a - b
else: b = b - a

return a
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GCD through modular
reduction

We can actually cut through (or hide) a whole bunch of the repeated sub-
traction by using the remainder option.

In example 2.3 on page 16, where we repeatedly subtracted 12 from 30
until we got 6, we could have simply used the fact that when you divide
30 by 12, you get the quotient 2 and a remainder of 6. We only need the
remainder here, and the fancy name for this is “modular reduction”. This
can often be written as “6 = 30 mod 12”. In many programming languages,
including Python, the remainder operator is written as ‘%’.

We can skip a whole bunch of the individual subtractions by using mod-
ular reduction instead of repeated subtractions. This gives us a simpler way
to write the algorithm shown in Listing 2.3.

Listing 2.3 GCD using modular reduction
def gcd_mod(a: int, b: int) -> int:

"""GCD with mod"""
while a != 0:

# make a the new remainder, b the old a
a, b = b % a, a

return b

The line a, b = b % a, a might be hard to read but it is saying, set a
to b % a, and set b to the old value of 𝑎. That line could have been written
as three lines:

tmp = a
a = b % a
b = tmp

Instead of checking for when a and b are equal, we check for when the last
(implicit) subtraction gets to zero. This goes one subtraction more than the
original algorithm, and it returns 𝑏, which is the value we have before that
last (implicit) subtraction. This version of the algorithm, using modular
reduction, is the recommended one, and it also will serve as the basis of the
Extended Euclidean Algorithm which we will get to in §2.2.6.

GCD through recursion There is, of course, another way to write the Euclidean Algorithm. I list it in
2.4, but won’t talk about it other than to say it is slow and consumes a great
deal of memory. Don’t use it. But I do feel that it is the best expression of
the Euclidean Algorithm.

All three of these GCD implementations work, but gcd_mod() is the
better one to use in practice. But don’t even use it, as it behaves very badly
on some input.
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Listing 2.4 Recursive GCD algorithm: If programming languages captured
mathematical elegance, then this would be the right implementation. But
as things stand, this is slow and consumes a great deal of memory.
def gcd_recursive(a: int, b: int) -> int:

"""Greatest Common Divisor: Recursive algorithm"""
if b == 0: return a
else: return gcd_recursive(b, a % b)

Euclid versus common divisors I mentioned that the method (illustrated in example 2.1 on page 15) which
involves first finding all of the divisors is only suitable for small numbers.
Suppose we are seeking to find the greatest common divisor of 57 130 249
371 827 and 7 433 019 835 183. Those numbers are still tiny by cryptographic
standards, but they are big enough to illustrate the point. It takes 56 sub-
tractions using the implementation of Euclid’s Algorithm from listing 2.2
on page 17. Finding the divisors could take about 50 thousand multiplica-
tions.6 The gcd in this case turns out to be 8 517 479. So even if Euclid’s
Algorithm is not what you learned in school7 for simplifying fractions, you
were rarely asked to find the factors of numbers greater than 100.

2.2.4 Least Common
Multiple

We are later going to need the least (smallest) common multiple of two
numbers. You did this back in school when learning how to add factions.
Suppose you were tasked with adding 3

10 + 1
25 . You needed to convert that

into something where the denominators are the same, and that meant finding
the least common multiple of 10 and 25. One way to find a common multiple
is to just multiply the two numbers together. That would get you 250 as a
common multiple, and you would end up adding 75

250 + 10
250 .

But if you wanted to work with smaller numbers, the whole thing would
be easier if you found a smaller common multiple of 10 and 25. The smallest
common multiple is 50. So you can convert the problem to 15

50 + 2
50 giving

you an answer of 17
50 .

It turns out that if you can compute the gcd of the numbers easily it is
easy to find the least common multiple. You multiply the two numbers and
then divide by their greatest common divisor.

6I am estimating based on Fermat’s factoring algorithm. There are more efficient
ways to find divisors of big numbers, but Fermat’s method is far more efficient than trial
divisions.

7Meijer calls that the “high school method” [Mei16, §2.3], although it tends to be
taught around 6th grade in the United States. Perhaps high school is the last time most
people ever sought a gcd.
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Consider the least common multiple of 12 and 20. Multiples of 12 include
12, 24, 36, 48, 60, 82, and more. Multiples of 20 include 20, 40, 60, 80, 100,
120, and so on. If we multiply 12 by 20 we get 240, which is a common
multiple, but it is not the least common multiple. Looking at our list of
multiples, we see that 60 is the smallest one in common. The gcd(12, 20) is
4. and 60 = (12 × 20)/4. That is not a coincidence.

We don’t want negative answers, so we take the absolute value abs() of
the product as shown in listing 2.5.

Listing 2.5 Least Common Multiple
def lcm(a: int, b: int) -> int:

"""Least common multiple"""
# `//` is integer division in Python.
return abs(a*b)//gcd(a, b)

The result should always be an integer, but we use the // operator to
get an integer type in Python here.

2.2.5 Modular inverse With ordinary arithmetic, there is a notion of reciprocal. The reciprocal of
3 is 1

3 . The reciprocal of 24
5 is 5

24 . The defining characteristic of a reciprocal
is that when you multiply a number by its reciprocal you get 1. In what
follows (and much of anything you will read on this stuff), we write the
reciprocal of 𝑛 as ‘𝑛−1’. It might occasionally be written as 1

𝑛 , but it is
more likely to be written as ‘𝑛−1’. Get used to it. Also the fancy name for
reciprocal is “multiplicative inverse”.

If we are only dealing with integers (as we are), then you would think that
1 is the only number that has an integer reciprocal. 1 is its own reciprocal.
But when we do all of our arithmetic modulo some modulus, we might find
that other numbers have multiplicative inverses.

In ordinary multiplication the reciprocal of 7 is 1
7 , which is not an inte-

ger. If, however, we are working modulo 15 we can find (as shown in from
equation 2.3) that there is an integer (in this case 13) that you can multiply
7 by to get 1.

7 × 13 ≡ 91 ≡ 1 (mod 15) (2.3)

and so 13 is the multiplicative inverse of 7 (mod 15). Because I am slowly
trying to indoctrinate you all into algebraic notation, we will express that
as in equation 2.4

7−1 ≡ 13 (mod 15) (2.4)
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× 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 2 4 6 8 10 12 14 1 3 5 7 9 11 13
3 3 6 9 12 0 3 6 9 12 0 3 6 9 12
4 4 8 12 1 5 9 13 2 6 10 14 3 7 11
5 5 10 0 5 10 0 5 10 0 5 10 0 5 10
6 6 12 3 9 0 6 12 3 9 0 6 12 3 9
7 7 14 6 13 5 12 4 11 3 10 2 9 1 8
8 8 1 9 2 10 3 11 4 12 5 13 6 14 7
9 9 3 12 6 0 9 3 12 6 0 9 3 12 6

10 10 5 0 10 5 0 10 5 0 10 5 0 10 5
11 11 7 3 14 10 6 2 13 9 5 1 12 8 4
12 12 9 6 3 0 12 9 6 3 0 12 9 6 3
13 13 11 9 7 5 3 1 14 12 10 8 6 4 2
14 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 2.1: Multiplication table for 1 through 14 modulo 15

Totients This whole document is optional, but some sections are more optional than
others. This is one of those more optional sections. So feel more than free
to skip ahead to section 2.2.6. Or just skip the whole thing.8

Figure 2.1 shows a multiplication table for the numbers 1 through 14
modulo 15. If you stare at it enough, you might notice a few patterns.
There will also be some patterns that you are not going to notice on your
own, but do take a look at to see what you do notice.

1. We could have gotten by with only half of the table because 𝑎 × 𝑏 is
the same as 𝑏 × 𝑎. For example, if you look across row 4 you should
see the same sequence of numbers that you would get by looking down
column 4.
(Also this would be a good time for you to check work through 4 × 9
(mod 15) to make sure that you get 6.)

2. Not all rows (or columns) have a 1 in them. For example, there is
nothing you can multiply 6 by to get 1. But there is something you
can 8 by to get 1: 8 × 2 ≡ 1 (mod 15). This means that 8 has an
inverse modulo 15, but 6 does not.

8Although I put in way too much work into creating this document and would love to
have it appreciated, I recognize many of the limits of its usefulness.
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Look at the row for 8 and the row for 6 (or the columns if you prefer)
and see what else you notice. (Really, take some time to do that now
instead of reading on.)

3. Each row (or column) with a 1 in it has all of the numbers 1 through
14; none of the other rows (or columns) do.

4. Which numbers do have modular inverses? There are eight of them.
Can you catch them all?

5. None of the rows (or columns) that have a 1 in them have a 0 in them.
All of the rows (and columns) that do not have a 1 in them do have a
0.

6. The numbers that have modular inverses modulo 15 are 1, 2, 4, 7, 8,
11, 13, 14. Do those numbers have a special relationship with 15 that
the other numbers do not?
(Yes. Yes they do. Hint: Look at the GCD of 6 and 15 and of 8 and
15.)

What you will not have noticed (unless you should be writing this doc-
ument instead of reading it) it that the number (8) of numbers that have
a modular inverse stands in a special relationship with the prime factors of
15. Fifteen is the product of 3 and 5, and eight is the product of (3 − 1)
and (5 − 1). When some number 𝑁 is the product of two distinct primes,
𝑝 and 𝑞, then the number of numbers less than 𝑁 which are coprime to 𝑁
is (𝑝 − 1)(𝑞 − 1). This quantity is called the (Euler) totient9 or Euler’s 𝜑
(phi).10 In the present case, we could write 𝜑(15) = 8. To compute 𝜑(𝑁)
one needs the prime factorization of 𝑁 .

If we toss out the numbers that are not coprime with 15 (and so don’t
have inverses mod 15) we get a nice tidy group of eight numbers modulo 15
with convenient mathematical properties.

9It is typically just called the totient, but when we need to distinguish it (as we will)
from the Carmichael totient we say “Euler”. Note also that the proper pronunciation of
“Euler” sounds a lot like “oiler” and never like “yuler”.

10The small Greek letter phi can be written as either ‘𝜙’ or ‘𝜑’. You may see both
when people write about Euler’s totient. I prefer the latter variant because it is prettier.
In American English the Greek letter 𝜑 is pronounced as the word “fie”, while in British
English it is pronounced “fee”. I don’t know what Canadians say, but you might encounter
either.
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× 1 2 4 7 8 11 13 14
1 1 2 4 7 8 11 13 14
2 2 4 8 14 1 7 11 13
4 4 8 1 13 2 14 7 11
7 7 14 13 4 11 2 1 8
8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4
13 13 11 7 1 14 8 4 2
14 14 13 11 8 7 4 2 1

Figure 2.2: Mod 15 multiplication table for the integers coprime with 15.
Groups constructed this way have lots of properties that work out to be
useful and interesting. This is called a “multiplicative group” and may be
notated with something like ‘ℤ×

15’.

2.2.6 Extended Euclidean
algorithm

With a small number like 15, we can just create a multiplication table (as
in Figure 2.1 on page 21) and look for the inverses. But this takes at
least as much computation as factoring, so it won’t work for big numbers.
Fortunately there is a way to find the modular inverse of a number using an
extension of the Euclidean algorithm for computing computing the greatest
common divisor.

The extended Euclidean algorithm (EEA) computes the the gcd(𝑎, 𝑏),
but it also computes integers 𝑥 and 𝑦 such that

𝑎𝑥 + 𝑏𝑦 = gcd(𝑎, 𝑏) (2.5)
In the case where 𝑎 and 𝑏 are coprime, the GCD will be 1. And with a

bit more algebra than anyone wants to work through, if 𝑎𝑥 + 𝑏𝑦 = 1, with
all of the things being integers, then 𝑥 is the inverse of 𝑎 modulo 𝑏.

The function egcd(a, b) will give us not only the GCD of the input,
but also the 𝑥 and 𝑦. We don’t need the 𝑦.

The reason that we need to return x % m instead of just x is that there
are many values for 𝑥 that are modular inverses when we consider negative
numbers or numbers greater than 𝑚. Just as 3 ≡ 7 (mod 10) so is 13, 23,
33, 2938473, as well as −17 and many more. We say that those numbers
are “congruent” modulo 10, and typically use the symbol ‘≡’ instead of ‘=’.
It is convenient11 to work with the smallest positive inverse, and that last
remainder operations makes sure that we get this.

11When first implementing our web-client in Safari we encountered a bug that Rob Yoder
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Listing 2.6 Modular inverse
def modinv(a: int, m: int) -> int:

"""return x such that (x * a) % m == 1"""
g, x, _ = egcd(a, m)
if g != 1:

raise Exception('gcd(a, m) != 1')
return x % m

To get the 𝑥 from equation 2.5 on the preceding page, the algorithm needs
to keep track of intermediate values of 𝑥 and 𝑦. And it has to recalculate
these with every modular reduction based on prior values and the quotient
from the most recent division. The bookkeeping for all of that makes my
head spin, and while I see from the proofs that it does work, I don’t have
a firm intuition of why it works. In general, it is recomputing intermediate
values of 𝑥 and 𝑦 to keep something like equation 2.5 true as the computation
progresses.

Anyway, during the loop we have in gcd_mod, we need to keep track
of 𝑥 and 𝑦, we also need to know what they were in the previous round.
We can use a two-by-two matrix 𝐴 = ( 𝑦0 𝑦1𝑥0 𝑥1 ) to keep track of these. It’s
initial state is the identity matrix, 𝐴0 = ( 1 0

0 1 ). Each time through the loop
after we compute a remainder and quotient we update 𝐴 as in equation 2.6.
The 𝑖=th time through the loop, the new value for 𝐴 is computed from the
previous value of 𝐴 (called ‘𝐴𝑖−1’) and the quotient, 𝑞, of 𝑏/𝑎.

𝐴𝑖 = 𝐴𝑖−1 (0 1
1 −𝑞) (2.6)

This gives us an implementation (in listing 2.7) of the extended Euclidean
algorithm that should not be used in real life. It does help promote the
intuition that each time through we are performing a linear transformation
on our 𝑥s and 𝑦s.

Now we move on to the implementation that should be used. Instead of
creating matrices (with all of the overhead that entails) it just unwinds the
steps of the matrix multiplication.

traced to occurring when in the private key 𝑝 < 𝑞. It wasn’t Safari that was generating
such private keys, but Safari at time was barfing on them. Apple optimized their modular
inverse computation along with some other things, that worked fine when 𝑝 > 𝑞. The
standards were less than helpful, in that they seemed to assume that 𝑝 would always be
greater than 𝑞, but they never stated it as a requirement.
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Listing 2.7 Extended Euclidean Algorithm with matrix multiplication
def egcd_m(a: int, b: int) ->Tuple[int, int, int]:

"""Extended GCD using matrix multiplication"""

# first set A as the identity matrix
A = np.identity(2, dtype=object)
while a != 0:

(q, a), b = divmod(b, a), a
R = np.array([[0, 1], [1, -q]], dtype=object)
A = np.matmul(A, R)

return b, A[1,0], A[0,0]

Listing 2.8 Extended Euclidean Algorithm
def egcd(a: int, b: int) ->Tuple[int, int, int]:

"""return (g, x, y) such that a*x + b*y = g = gcd(a, b)"""

x0, x1, y0, y1 = 0, 1, 1, 0
while a != 0:

(q, a), b = divmod(b, a), a
y0, y1 = y1, y0 - q * y1
x0, x1 = x1, x0 - q * x1

return b, x0, y0

2.3 RSA Public keys
The part of a public RSA key that is unique to each user is sometimes
called “the public modulus”. It is the product of two prime numbers, and is
typically referred to as ‘𝑁 ’.

There is another part, called “the public exponent”, that is not unique.
The public exponent, typically given the variable name ‘𝑒’, needs to have
certain mathematical properties, but it is also convenient for it to have
very few 1s in its binary representation. Back in the old days, 3 and 17
were typically used for the public exponent, but someone discovered some
problems if it is too small. These days, it is usually set to 65537, but we will
use default to 17, because we are illustrating things with small numbers.

A public RSA PubKey, then has two values in it. The __init__() func-
tion listed in 2.9 allows us to create a new public key with something like
MyPublicKey = PubKey(17, 4183).

2.3.1 Encryption Encrypting something using a public key is very simple. The ciphertext, 𝑐,
is simply the message 𝑚 you want to encrypt raised to the public exponent,
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Listing 2.9 Public key members
class PubKey:

"""An RSA public key"""
def __init__(self, exp: int, N: int):

self.e = exp
self.N = N

all modulo the public modulus.

𝑐 = 𝑚𝑒 (mod 𝑁) (2.7)

Python has a built-in modular exponentiation function, pow(), that does
– you guessed it – modular exponentiation. This makes the code for RSA
encryption simple.

Listing 2.10 encrypt() method for PubKey
def encrypt(self, ptext: int) -> int:

"""Encrypt a plaintext (int) using the public key """
return pow(ptext, self.e, self.N)

2.4 Private keys
With the functions for computing modular inverses (listing 2.6 on page 24),
which depends on the Extended Euclidean Algorithm (§2.2.6), and which in
turn depends on the Euclidean Algorithm for computing Greatest Common
Divisors (§2.2) which depends on integer division (§2.1.3) we now have ev-
erything we need to handle private keys and RSA decryption.12 So if you
skipped a bunch of the math to get straight to public keys, it is now time
to pop back to §2.1.3 on page 13.

In one sense an RSA private key just needs to be the two prime factors
𝑝 and 𝑞 of the public modulus 𝑁 along with the public exponent. All of
the other parts can be computed from those. However, it makes sense to
pre-compute some of these, the most important of which is the decryption
exponent 𝑑.

We can initialize it with the primes 𝑝 and 𝑞 along with the public ex-
ponent 𝑒 (default of 17). We can set up a KeyPair as something that has

12This assumes that we don’t use the Chinese Remainder Theorem (CRT) in our de-
cryption. An implementation designed for working with larger numbers would.
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Listing 2.11 Initializing a key pair from primes
class KeyPair(PubKey):

"""An RSA key pair"""
def __init__(self, p: int, q: int, exp:int=17):

primes = sorted([p, q])
self.q, self.p = primes[0], primes[1]
self.e = exp
self.N = p * q
try: self.d = self._compute_d()
except Exception as e:

raise Exception("Could not compute decryption exponent") from e

everything a PubKey has and more. See footnote 11 on page 23 for some
hint into why we ensure that the prime we store as p is the larger of the two.

It will be useful to have a method get the public key out of a key pair.
KeyPair.pub_key() is shown in listing 2.12

Listing 2.12 Get a public key from a key pair
def pub_key(self) -> PubKey:

"""Get public key"""
return PubKey(self.e, self.N)

Before getting to how the decryption exponent (𝑑) is computed, let me
show how it is used in equation 2.8, in which 𝑚 is the decrypted message, 𝑐
is the ciphertext, 𝑁 is the public modulus, and 𝑑 is the decryption exponent.

𝑚 = 𝑐𝑑 (mod 𝑁) (2.8)

Once we have 𝑑 then the code to decrypt is simple (though see footnote 12),
as shown in listing 2.13.

Listing 2.13 Decrypting with a private key
def decrypt(self, ctext: int) -> int:

"""decrypt ctext"""
return pow(ctext, self.d, self.N)

2.4.1 Decryption exponent The decryption exponent, 𝑑, is a secret that should only be available to
the holder of the private key. When 𝑝 and 𝑞 are sufficiently large primes
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and 𝑁 = 𝑝𝑞, it is easy (there is a polynomial time algorithm) to compute
𝑑 from 𝑝, 𝑞, and 𝑒. It can be proved that computing 𝑑 from just 𝑒 and
𝑁 is as hard as factoring 𝑁 into its prime factors.13 So what is 𝑑? There
isn’t a really good order in which to explain this, so be prepared to read
through this section multiple times. The decryption exponent (𝑑) is the
multiplicative inverse of the public exponent (𝑒) modulo the the Carmichael
totient of the public modulus 𝑁 . The Carmichael totient of a number 𝑁 is
typically written using the Greek letter lambda as ‘𝜆(𝑁)’. We can define 𝑑
as in equation 2.9 and compute it as in listing 2.14.

𝑑 = 𝑒−1 mod 𝜆(𝑁) (2.9)

Listing 2.14 Computing the decryption exponent
def _compute_d(self) -> int:

λ = lcm(self.p - 1, self.q - 1)
try: return modinv(self.e, λ)
except Exception as e:

raise Exception("Inverse of e mod λ does not exist") from e

The Carmichael totient can be computed as the least common multiple
of one less than each of the distinct prime factors of a number. In our case,
where 𝑝 and 𝑞 are the prime factors of 𝑁 that means that

𝜆(𝑁) = lcm(𝑝 − 1, 𝑞 − 1) (𝑝 and 𝑞 are distinct prime factors of 𝑁) (2.10)

Often times the Carmichael totient, 𝜆(𝑁), will be the same as the Euler
totient, 𝜑(𝑁); but sometimes 𝜆(𝑁) will be a factor of 𝜑(𝑁).14

13Just as we can compute 𝑑 from 𝑝, 𝑞, and 𝑒, there is a probabilistic polynomial time
algorithm to compute 𝑝 and 𝑞 from 𝑑, 𝑁, and 𝑒. Thus we can reduce finding 𝑑 to factoring
𝑁 and reduce factoring 𝑁 to finding 𝑑. So they are just as hard. This does not prove
that the RSA algorithm is as hard to break as the factoring problem; it only proves that
RSA key recovery is as hard as factoring. There may be ways to break RSA that do not
involved finding 𝑑.

14If you correctly compute a Patty and Molly story for the 1Password white paper, but
then provide the details of the computation using 𝜑(𝑁) instead of 𝜆(𝑁), you may find
yourself in the embarrassing situation in which you have told people to work through the
text and that the “the numbers are chosen to actually work” only to find that it doesn’t
actually work.
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Chapter 3

Why does it work

If this chapter existed, it would contain an attempt at an explanation for why
the math and algorithms described in Chapter 2 yield the kind of encryption
which we see illustrated in Chapter 1.

But this chapter does not exist. You are hallucinating it.

3.1 Why totients matter
Remember the section 2.2.5 which you skipped over? Go back and read it
now. Even if you didn’t skip over it, go back and read it again.

Welcome back. In 1640 Pierre de Fermat stated (with some fixes, modern
notation, and not in French) that if you raise a number to a prime power
and you reduce it modulo that same prime you end up with the number you
started with.

Fermat’s Little TheoremTheorem 1 If 𝑝 is prime and 𝑎 is not a multiple of 𝑝 then

𝑎𝑝 ≡ 𝑎 (mod 𝑝)

Theorem 1 is called “Fermat’s Little Theorem” (FLT) to distinguish it from
“Fermat’s Last Theorem.” The latter is famous for the fact that Fermat
did not prove it; Fermat didn’t prove the little theorem either, but it’s not
famous for that. Fermat’s Little Theorem was proved by Euler in 1736.
What really distinguishes the two is that the little theorem is enormously
useful. Here we will use the abbreviation “FLT” to refer to the little theorem.

To illustrate it, let’s set our prime 𝑝 to 7 and do a bunch of exponentia-
tions as shown in Table 3.1.

If we divide both sides of the relation in theorem 1 by 𝑎 we get an
alternate form of the theorem stated in 2. Recall that when we say “divide
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𝑎 1 2 3 4 5 6
𝑎7 1 128 2187 16 384 78 125 279 936

𝑎7 (mod 7) 1 2 3 4 5 6
𝑎7−1 (mod 7) 1 1 1 1 1 1

Table 3.1: Illustrating Fermat’s Little Theorem with 𝑝 = 7

by 𝑎” what we really mean is “multiply by the multiplicative inverse of 𝑎.”
That is, instead of saying something like 𝑥/𝑎, we say, 𝑥𝑎−1.

𝑎𝑝 ≡ 𝑎 (mod 𝑝) (Statement of theorem 1)
𝑎𝑝𝑎−1 ≡ 𝑎𝑎−1 (mod 𝑝) (Multiply both sides by 𝑎−1)

𝑎𝑝−1 ≡ 1 (mod 𝑝) (After the multiplication)

This form of it is more common. If you don’t see how theorems 1 and 2
are the same, it is worth spending time going over it until it makes sense.
We will be switching back and forth between the two forms rapidly.

Also Fermat’s Little TheoremCorollary 2 If 𝑝 is prime and 𝑎 is not 𝑎 multiple of
𝑝 then

𝑎𝑝−1 ≡ 1 (mod 𝑝)

Can we generalize Fermat’s Little Theorem to cases when when 𝑝 is not
prime? Well, we can’t, but Euler could. When he proved FTL, he proved a
generalization of it. Recall (I did tell you to go back and read §2.2.5) that
the totient of a count of the coprimes less than it. There are eight numbers
less than 15 which are coprime with 15. This gets written as “𝜑(15) = 8”
using the greek letter phi.

Euler proved theorem 3, an extension of FLT, that works not just for
prime moduli but for any modulus.

Euler’s totient theoremTheorem 3 If gcd(𝑎, 𝑛) = 1 (that is, if 𝑎 and 𝑛 are coprime)
then

𝑎𝜑(𝑛) ≡ 1 (mod 𝑛)
where 𝜑(𝑛) is the totient of 𝑛.

The numbers less than 10 which are coprime with 10 are 1, 3, 7, and 9.
There are four of those, so 𝜑(10) = 4. This means that if we raise any
number (that is coprime with 10) to the 4-th power the result should be 1
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𝑎 1 3 7 9 27
𝑎4 1 81 2401 6561 531 441

𝑎4 (mod 10) 1 1 1 1 1

Table 3.2: Illustrating Euler’s theorem with 𝑛 = 10. 𝜑(10) = 4, so 4 will be
our exponent, while 10 is the modulus. We can set 𝑎 to something greater
than 10 (as long 𝑎 and 10 are coprime), but for all computation mod10 we
can first reduce 𝑎 mod 10. That is, because, say 27 ≡ 7 (mod 10) we only
need to test with 7 as 17, 27, 37, etc will have the same result.

more than a multiple of 10. So let’s look at this for the numbers coprime
with 10 that are less than 10 along with a number greater than 10.

The last column of table 3.2 is to illustrate the case where 𝑎 (27) is larger
than our modulus (10). But when working in a mod 10 world, we would
just reduce 27 to 7 before doing any other computation. So because we have
tested with 7 there is no point in testing with 27.1

A very useful fact that follows from Euler’s Theorem is that

𝑎𝜑(𝑁)+1 ≡ 𝑎 × 𝑎𝜑(𝑁) (mod 𝑁)
≡ 𝑎 × 1 (mod 𝑁)
≡ 𝑎 (mod 𝑁)

(3.1)

3.1.1 Computing totients Computing the totient of a number 𝑛 requires knowing the prime factors
of 𝑛. The general formula using the factors of 𝑛 to compute 𝜑(𝑛) can be
kind of messy. Fortunately we only need a simplified version. When we are
talking about exactly two prime factors of 𝑛 and those factors not equaling
each other, then computing the totient is simple and shown in equation 3.2.

𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1) (When 𝑝, 𝑞 are prime and 𝑝 ≠ 𝑞.) (3.2)

If we look at 15, which is the product of 3 and 5, we can see that 𝜑(15) =
(3 − 1)(5 − 1) = 8.

In the special case when 𝑛 itself is prime the number of coprimes less
than it will be 𝑛 − 1. So in the case when 𝑛 is prime, Euler’s theorem (3)

1Well, Euler’s theorem is a theorem with a solid proof, so there really isn’t any point
of testing any of this other than as an illustration or to help see what it means.
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reduces to Fermat’s little theorem (2). Because FLT is just a special case of
Euler’s theorem, it will sometimes be referred to as “Euler’s theorem.” After
all, Euler is the one who proved it. But there are so many things named for
Euler, you will sometimes see Euler’s theorem referred to as “Fermat’s little
theorem” as it is just a generalization of it. What you will never hear from
a mathematician is it referred to as “you-ler’s theorem” (see footnote 9 on
page 22).

3.2 Putting it all together
Recall that encrypting a message 𝑚 is done by raising 𝑚 to public exponent
𝑒 power, all modulo the public key, 𝑁 . 𝑁 is the product of two primes, 𝑝
and 𝑞.

𝑐 = 𝑚𝑒 mod 𝑁 (2.7)

A decryption (private) key is computed using the totient of 𝑁 , as in
equation 2.9,

𝑑 = 𝑒−1 mod 𝜑(𝑁) (2.9)

And decryption is
𝑚 = 𝑐𝑑 mod 𝑁 (2.8)

Recall what it means for something to be the modular inverse of some-
thing else. Anything times its modular inverse is 1. So that 𝑑 is computed
as the inverse of 𝑒 modulo 𝜑(𝑁) then we can see in (3.3) that 𝑒 times 𝑑 is
one more than an integer multiple of the totient of 𝑁 .

𝑒𝑑 = 1 (mod 𝜑(𝑁))
𝑒𝑑 = 𝑘𝜑(𝑁) + 1 (3.3)

From Euler’s Theorem we know that

𝑎𝜑(𝑁) = 1 (mod 𝑁). (3.4)

and we know that 𝑎 × 1 = 𝑎 (mod 𝑁) and 𝑎 × 𝑎𝑥 = 𝑎𝑥+1. This gives us a
fact that will be useful shortly.

𝑎𝜑(𝑁)+1 = 𝑎 (mod 𝑁). (3.5)

And so

𝑎𝑘𝜑(𝑁)+1 = 𝑎 (mod 𝑁) (for any positive integer 𝑘) (3.6)
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If you don’t see why (3.6) follows from (3.5) remember that 𝑎2𝑥 = 𝑎𝑥𝑎𝑥,
and so 𝑎2𝑥+1 = 𝑎𝑥𝑎𝑥𝑎.

Now let’s pull apart what 𝑐𝑑 is, using the various useful facts discussed
above.

𝑐𝑑 = (𝑚𝑒)𝑑 (mod 𝑁)
= 𝑚𝑒𝑑 (mod 𝑁)
= 𝑚𝑘𝜑(𝑁)+1 (mod 𝑁)
= 𝑚 (mod 𝑁)

(3.7)

And there we have it.

• 𝑑 allows one to compute the original message 𝑚 from the ciphertext 𝑐
and the public modulus 𝑁 .

• 𝑑 is computed from the public exponent 𝑒 and the totient of 𝑁 .

• The totient of 𝑁 is computed from the prime factors of 𝑁 .

Is there a way to decrypt 𝑐 without learning 𝑑 or the factors of 𝑁? There
is no proof to that effect.
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Colophon
This document started out as an attempt to blend documentation,
including rationales and explanations, into some Python code. This
led me down a rabbit hole of experimenting with a variety of tools
for literate programming with Python as well as far more discussion
of code than originally anticipated. I personally learned a great deal,

even if this was not the best use of my time.
The source for both the documentation and the Python code are

in TEX Weave files, with the TEX files to be woven by pweave and the
Python files to be tangled by ptangle. Both of those are from Pweave
version 0.30.3. Unfortunately, characteristics of the Python language

require more sophisticated weaving than Pweave offers.
Python 3.10.0 was used for all of the Python code. XƎTEX 3.141592653-

2.6-0.999993 is the TEX engine, with LATEX 2𝜀 2021-06-01. The fonts
are all from the Computer Modern Unicode super family of typefaces.
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