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This document is just sort of my workbook for performing some easy and hard computations. It
contains math and sketchy partial explantions of that math for things that we have not gotten to
yet.
This notebook is using SageMath

[48]: version()

[48]: 'SageMath version 10.2, Release Date: 2023-12-03'

1 Factoring
First we pick two random primes. (I don’t want to generate new primes each time I update this
document, so I comment those out.)

[1]: dhBits = 220
# p = random_prime(2^(dhBits//2), lbound = 2^(dhBits//2 - 1))
p = 868112830765445632873217196988651
print(f'p is {p}')
# q = random_prime(2^(dhBits//2), lbound = 2^(dhBits//2 - 1))
q = 1180775137873020977354442912336269
print(f'q is {q}')

p is 868112830765445632873217196988651
q is 1180775137873020977354442912336269

The choice of 110 bits for each prime was through trial and error to see what took about a short
enough time to actually factor (as it has to happen every time I generate the document), but long
enough to illustrate that it does take time.

[2]: time p * q

CPU times: user 4 µs, sys: 0 ns, total: 4 µs
Wall time: 5.01 µs

[2]: 1025046047436407593990706183629376939000352221561805965005888683119

[3]: N = p * q
print(f'N: {N}')

N: 1025046047436407593990706183629376939000352221561805965005888683119
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1.1 Counting digits
Let’s see how many digits that is. Some people might want to save the decimal representation into
a string and then count the characters in the string, but I prefer to think of it as a math problem.
It’s pretty much the base 10 logarithm rounded up. For example log10 99 ≈ 1.9956. If we round
up, we get the correct number of digits, 2. Now if we want to know how many digits there are in
102, we do the same. log10 102 ≈ 2.0086. We round up and get 3, which is the correct number of
digits in 102.
That neat little trick doesn’t work when we have a number like 100 which is exactly a power of 10,
and log10(100) = 2. Rounding up, would leave us at 2, but one hundred is a three digit number.
So what we have to do is add 1 to our logarithm and round down.
We use ‘⌊𝑎⌋’ as the notation for the floor of 𝑎, the function of rounding 𝑎 down.

𝐷(𝑥) = ⌊log10(𝑥) + 1⌋

This can work for any base, not just base 10.

𝐷(𝑥, 𝑏) = ⌊log𝑏(𝑥) + 1⌋

And if you think I am spending too much time on this, do recall (for those who were participating
at the time) that I said that the more comfortable you get with dealing with logarithms, the easier
the rest of the book will be.

[49]: def digits(x: int, base:int = 10) -> int:
return floor(log(x, base) + 1)

print(f'Digits in N: {digits(N)}')

Digits in N: 67

[5]: time factor(N)

CPU times: user 8.47 s, sys: 20 ms, total: 8.49 s
Wall time: 8.61 s

[5]: 868112830765445632873217196988651 * 1180775137873020977354442912336269

When not commented out, that time factor(N) produced results like
CPU times: user 8.41 s, sys: 168 ms, total: 8.58 s
Wall time: 8.59 s
868112830765445632873217196988651 * 1180775137873020977354442912336269

So on my machine, I can factor a 67 digit number in just under 9 seconds. The machine that I am
running this on is 2023 MacBook Pro with an M2 Pro chip and 16 gigabytes of universal memory.
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1.2 Toy RSA
The RSA algorithm used for these must examples not to be used for actual cryptography, even if
the keys were large enough.

[6]: Z_N = Zmod(N)
# phiN = lcm((p - 1), (q - 1))
phiN = (p - 1) * (q - 1)
print(f'φ(N): {phiN}')
pub_exp = 65537 # 0x10001
d = inverse_mod(pub_exp, phiN)
print(f'secret key (d): {d}')

φ(N): 1025046047436407593990706183629374890112383583095195737345779358200
secret key (d):
1021260992528804093101960118102446456961534492854430408318852910473

[7]: # just some checks
if gcd(pub_exp, phiN) == 1:

print(f'Good: gcd(e, φ(N)) = 1')
else:

print(f"Bad news: gcd(e, φ(N)) = {gcd(pub_exp, phiN)}")

if gcd(d, phiN) == 1:
print(f'All is right with the world: gcd(d, φ(N)) = 1')

else:
print(f"Shouldn't happen: gcd(d, φ(N)) = {gcd(d, phiN)}")

Good: gcd(e, φ(N)) = 1
All is right with the world: gcd(d, φ(N)) = 1

The public exponent, pub_exp, is part of the public key, along with N, but it is not unique to the
key holder. It is contrived to be prime and have only two 1-bits in its binary representation.

[8]: print(f'pub_exp = {pub_exp} (0b{pub_exp:b})')
print(f'pub_exp {"is" if is_prime(pub_exp) else "is not"} prime')

pub_exp = 65537 (0b10000000000000001)
pub_exp is prime

[9]: # m = randint(0, 2^256)
m = 618331390490392940679546808641282754642010709989362560292557575844
m = Z_N(m)
print(f"message (m): {m}")

c = m^pub_exp

print(f'ciphertext (c): {c}')

message (m): 618331390490392940679546808641282754642010709989362560292557575844
ciphertext (c):
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560345466981168561903713542978833062209067740909728572604689354426

Decryption is simply 𝑚 = 𝑐𝑑 (mod 𝑁)

[10]: m1 = c^d
if (m1 == m):

print("decryption worked")
else:

print("uh-oh")

decryption worked

There is a thing about totients, 𝜑(𝑁) that is crucial to all why this works.
Euler’s totient theorem:

𝑎𝜑(𝑁)+1 ≡ 𝑎 (mod 𝑁)

This also holds for 1 plus any integer multiple k of 𝜑(𝑁) , so

𝑎𝑘𝜑(𝑁)+1 ≡ 𝑎 (mod 𝑁)

Our private key, d has been defined to be the modular inverse of the public exponent, e modulo
𝜑(𝑁). So when we multiply d time e we get a result that it one more than a multiple of 𝜑(𝑁).

𝑒𝑑 = 1 (mod 𝜑(𝑁))
𝑒𝑑 = 1 + 𝑘𝜑(𝑁)

Let’s just confirm this with our example.

[50]: ed = pub_exp * d
if ( ed % phiN == 1):

print('ed = 1 (mod φ(N))')
else:

print('Shucky darn! ed mod φ(N) != 1')

k = (ed - 1) // phiN
# print(f'k = {k}')
if ed == (k * phiN) + 1:

print(f'ed = {k} * φ(N) + 1')
else:

print('Crap. ed != 1 + kφ(N)')
print(f'{"k:":>11} {k}')
print(f'{"ed:":>11} {ed}')
print(f'{"1 + kφ(N):":>11} {1 + k*phiN}')
print(f'{"1 + φ(N):":>11} {1 + phiN}')
print(f' gcd(ed, 1 + φ(N)) = {gcd(ed, 1 + phiN)}')

ed = 1 (mod φ(N))
ed = 65295 * φ(N) + 1
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Our ciphertext c is defined as 𝑚𝑒 (mod 𝑁)

𝑐𝑑 = (𝑚𝑒)𝑑 (mod 𝑁)
= 𝑚𝑒𝑑 (mod 𝑁)
= 𝑚𝑘𝜑(𝑁)+1 (mod 𝑁)
= 𝑚 (mod 𝑁)

(1)

2 Discrete Logarithm Problem
As I want to demonstrate the discrete logarithm problem, I will need to create a multiplicative
group of a size I have a chance of breaking. These need a prime of the right sort and a generator.
Not any prime will do, either. We first need to fine a Sofie Germain prime, which is a prime q for
which 2𝑞 + 1 is also prime. So in

𝑝 = 2𝑞 + 1 (where both 𝑝 and 𝑞 are prime)
p is called a safe prime, and q is called a Sofie Germain prime. (Germain used these in her
important progress on Fermat’s Last Theorem. Fermat’s Little Theorem is far more relevant to us,
but historical asides weirdly connect things.)
Anyway, I use openssl to create this.
I will use openssl to create DH parameters of an easily breakable size
% openssl dhparam -text 112
Generating DH parameters, 112 bit long safe prime, generator 2
This is going to take a long time
.........++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*++*

PKCS#3 DH Parameters: (112 bit)
prime:

00:9d:b3:ef:0f:f3:d0:1f:4d:36:e4:54:5f:27:4b
generator: 2 (0x2)

-----BEGIN DH PARAMETERS-----
MBQCDwCds+8P89AfTTbkVF8nSwIBAg==
-----END DH PARAMETERS-----

That did not actually take a long time, as I am only asking for a 112 bit safe prime. The line with
the ., +, and * is telling me about the progress of primality tests. There are fast tests, which will
eliminate most non-primes; and there are slower tests, which will identify non-primes that the fast
tests might miss, and there are even slower tests that rule out more. While these are polynomial
time, they are slow.
Let’s set p to what we got from openssl, and double check that it is a safe prime

[51]: p = 0x009db3ef0ff3d01f4d36e4545f274b
print(f'p = {p}')

if p in Primes():
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print('p is prime')
q = (p - 1) // 2
if q in Primes():

print('p is a safe prime')
else:

print('p is not a safe prime')
else:

print('p is not prime')

p = 3198594135065974402303823714395979
p is prime
p is a safe prime

We are going to use this prime to create a Galois Field, 𝐹 . In everything that follows, there is an
implicit “(mod 𝑝)” even though it isn’t being written out.
(The reasons for using a Galois Field instead of using Zmod(p).unit_group is because I don’t know
how to work with numbers as members)

[13]: F = GF(p)

Now we also have a generator, 2, from openssl.

[14]: g = F(2)

While I could just say g = 2, I get some really nice magic from the Sage type system by saying g =
F(2). It will make g not just the integer 2, but it will make it a member of the field F we created
from the safe prime p.
Now that we have our group set up, we will follow the time honored tradition of using a for Alice’s
secret, and b for Bob’s. We will use A for a public key that Alice can share and B for Bob’s.
Through accidents of history it is conventional to use “little a” and “little b” for the private keys
and “big A” and “big B” for the public keys when talking about schemes that are based on Diffie-
Hellman key exchange. Do not assume that developers are familiar with that convention. So in our
SRP implementations we refer to these ephemeral keys with names like “ephemeralClientSecret”
and “ephemeralClientPublic”.

[15]: # a = F.random_element()
a = F(1729842084772514752626713784179499)
print(f"Alice's secret is {a}")

# b = F.random_element()
b = F(2103635862115891753543676187838795)
print(f"Bob's secret is {b}")

Alice's secret is 1729842084772514752626713784179499
Bob's secret is 2103635862115891753543676187838795

Alice’s private key, a, is picked as a random element of our field F. It really is just a random number
less than p. Bob’s private key, b, is picked the same way.
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Again, I don’t want to actually generate new random numbers each time I rerun this document, so
I have commented those out and just hardcoded values that I got on an earlier run.
Let’s time how long it takes to compute 𝐴 = 𝑔𝑎 (mod 𝑝)

[52]: time g^a

CPU times: user 19 µs, sys: 4 µs, total: 23 µs
Wall time: 24.8 µs

[52]: 1142203535203822438059381484091159

So that is a few micro seconds.

[53]: A = g^a
print(f"Alice's public A is {A}")

Alice's public A is 1142203535203822438059381484091159

Now let’s look at how long it takes to compute Alice’s secret. That is if we know A, g, and p
in 𝐴 = 𝑔𝑎 (mod 𝑝), how long does it take to compute 𝑎 = log𝑔 𝐴 (mod 𝑝)? This is the opposite
of exponentiation, and so it is the logarithm. Because the numbers we are using are all whole
numbers, this is a discrete logarithm.

[18]: # time A.log()

When I didn’t comment out the above, I got something like
CPU times: user 9.26 s, sys: 120 ms, total: 9.38 s
Wall time: 9.36 s
1729842084772514752626713784179499

So that took about 10 seconds (in the particular run I am writing about. It varies from trial to
trial.)

2.1 Diffie-Hellman key exchange
Now let’s see how properties of exponents that everyone learned in high school and have since
forgotten allows us to turn all of this into a key exchange mechanism.
We already have a public key A for Alice, which is generated from her secret, a and the group
parameters g and p. We need the same for Bob

[54]: B = g^b
print(f"Bob's public B is {B}")

Bob's public B is 3038509940918202112314649515631589

Now recall (or relearn) that

(𝑥𝑛)𝑚 = 𝑥𝑚𝑛

Let’s look at an example in which we set 𝑥 = 5, 𝑛 = 2,𝑚 = 3. So (52)3 = 53⋅2 = 56.
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(52)3 = 253 = 15625
52⋅3 = 56 = 15625

And keep in mind that 𝐴 = 𝑔𝑎 and 𝐵 = 𝑔𝑏. So if Alice sends Bob A and Bob sends B to Alice,
then Bob (who is the only one who knows b) can compute 𝐴𝑏.

[55]: kb = A^b

Meanwhile, Alice (who is the only one who knows a) can compute 𝐵𝑎.

[56]: ka = B^a

Now we look at those properties of exponents to take a closer look at the key that Bob computes

𝑘𝑏 = 𝐴𝑏

= (𝑔𝑎)𝑏

= 𝑔𝑏𝑎
= 𝑔𝑎𝑏

and the key that Alice computes

𝑘𝑎 = 𝐵𝑎

= (𝑔𝑏)𝑎

= 𝑔𝑎𝑏

From this we see that 𝑘𝑎 and 𝑘𝑏 both should equal 𝑔𝑎𝑏.

[57]: if kb == ka:
print(f"Hurrah! Alice and Bob both computed the same key {kb}")

else:
print("I (JPG) screwed up this demo somewhere")

Hurrah! Alice and Bob both computed the same key
2162975104797301448200017133319858

As a note for later, the randomness properties of numbers computed this way aren’t quite right,
but we can smooth it out by taking an HMAC of it with a non-secret HMAC key. HKDF was
actually invented for the problem. But in the simple case, it just wraps HMAC, and the way I use
HMAC here what HKDF would end up doing anyway.

[23]: import hashlib
import hmac

In order to hash the integers ka or kb we need turn them into bytes. You would think that there
would be a nice easy way to do that. Perhaps there is, but I haven’t found it.
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[58]: # There has to be a better way
# convert kb into a form that can be hashed.
ikb = int(kb)
bikb = ikb.to_bytes((ikb.bit_length() + 7) // 8, byteorder="big")

We will use HMAC with SHA256 with the key being the bytes of the non-secret key "Derive from
DH key"

[59]: h = hmac.new(b'Derive from DH key', digestmod=hashlib.sha256)

# hash it
h.update(bikb)
kb_digest = h.digest()

# Convert hash digest to python integer
derived_key = int.from_bytes(kb_digest, byteorder='big', signed = False)

print(f'Key: {derived_key:x}')

Key: 671d81a11cdf197368766b2a26e48306735b0f8a18635c685dc98cf418192ff9

Alice needed her secret to compute the common key, and Bob needed his secret, but someone
listening into the communication should not be able to compute either secret from seeing A, B and
the group parameters (g and p).
Well, of course they could because I didn’t pick a large enough p, but if we pick a p of around 3072
bits, then it should take very roughly about as much work to for an attacker to compute a or b as
it would take to brute force a 112 bit symmetric key.
I need to note that this is toy DHKE meant only to illustrate how a (presumed) NP problem can
be used in cryptography. Turning this into a secure construction takes a great deal of other work.
And most notably, the scheme illustrated above may protect against someone who can eavesdrop
on the communication between Alice and Bob, but this is insecure against an attacker who could
interfer with the communication between Alice and Bob.

2.2 DLP over elliptic curves
The integer group that we set up with our 112 bit safe prime is not the only cyclic group that can
be used to make use of the Discrete Logarithm Problem. There are other suitable groups. I will
create a toy elliptic curve that has 40-bit keys and offers at most 20-bit security. How I picked the
particular parameters is described much later.
The group is defined by a curve (which is a set of points) and a special point that will act as a
generator. But to make things a bit more complicated, the x and y values for the points on the
curve are defined over an integer field. So we will be taking a prime, which I will call p40 from the
standards to define a finite field, FF as our first step.

[61]: # Finite field prime
# p256 = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF
# p112 = 0xdb7c2abf62e35e668076bead208b
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p40 = 872078115079
FF = GF(p40)

An elliptic curve is of the form

𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏 (mod 𝑝)

p is our p40 chosen above. We need a and b to be able to define the curve.

[62]: # a112 = FF(0x6127c24c05f38a0aaaf65c0ef02c)
# b112 = FF(0x51def1815db5ed74fcc34c85d709)

a40 = FF(522510265620)
b40 = FF(189830553521)

We can now define the curve.

[63]: EC = EllipticCurve([a40, b40])

There is also a standard point, G, on the curve that acts as our generator. It has an x coordinate
and a y coordinate.

[64]: # Base point (x, y)
gx = FF(842965367165)
gy = FF(470264993162)

G = EC(gx, gy)

Curve “order” is talked about in different ways The order of a point member of a group is not the
same as the order of the group as a whole. Different statements of the standards use the term in
different ways.
So following some versions, I will use n as the order of the base-point, and h for the cofactor. These
can be computed from what we already have, but they are useful numbers to have around, and
they are typically included in standards.

[66]: h40 = 2
n40 = 436039332233

We run a few consistency checks that group parameters we are told about actually conform to the
group.

[67]: if EC.order() == n40 * h40: print("|EC| = n * h")
else:

print('I thought "order" and "cardinality" mean the same thing in this␣
↪context')

if G.order() == n40: print('|G| = n')
else:

print(f' Out of order. |G| ({G.order()}) != n40 ({n40})')
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|EC| = n * h
|G| = n

2.3 Generalized Discrete Logarithm Problem (GDLP)
Groups have a single operation that have to have certain properties. It doesn’t really matter if
we call the operation multiplication or addition. The group operation that we used in ℤ𝑝 was
ordinary multiplication except that it was all on modulo p. And so it was very natural to just use
the notation for ordinary multiplication and exponentiation when looking at those.
For historical reasons, the group operation in elliptic curves is called “point addition.” And there is
a special way of adding points (its a fairly complicated computation), and so that is the way these
things are characterized in Elliptic curves. But really, in both cases we have an operation and a
set of things (integers in the first case, points of an elliptic curve in the latter case) and we have
an operation over those things that give us a finite cyclical group of the right sort.
Another convention is that points on an elliptic curve are typically given variable names like P, Q,
R, etc.

Operation Integer group Elliptic curve group
Group operation modular multiplication point addition

𝑎𝑏 𝑃 + 𝑄
repeated exponentiation scalar multiplication

𝑥𝑛 𝑑𝑃
from generator 𝐴 = 𝑔𝑎 𝑃 = 𝑝𝐺
logarithm Find 𝑎 given 𝐴, 𝑔 find 𝑝 given 𝑃 ,𝐺

log𝑔 𝐴 discrete_log(𝑃 ,𝐺)

All of the computations except for the logarithm one are easy. But the logarithm problems are
(presumed) hard.
The Generalized discrete logarithm problem (GDLP) covers both cases (and more). These days,
now that elliptic curve cryptography has pretty much replaced integer field DLP, the term “DLP”
is used for both. But back when elliptic curve cryptography was first becoming a thing, people
distinguished more between the two terms.
Now that we have the machinery up, we will talk about Penelope and Quintin.

[69]: # p = randint(2, p40)
p = 266038276613
print(f"Penelope's private scaler is {p}")

Penelope's private scaler is 266038276613

Remember that G is a point and p is a number. 𝑝𝐺 just means 𝐺+𝐺+𝐺+⋯+𝐺 with p as the
number of _G_s in that addition.
While point addition is a weird things, there are ways of speeding up repeated point addition that
means that computing p * G is really fast.
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[33]: time p * G

CPU times: user 597 µs, sys: 267 µs, total: 864 µs
Wall time: 2.1 ms

[33]: (714049738717 : 803151079992 : 1)

Now we continue setting up public and private keys.

[70]: P = p * G # Penelope's public point
print(f"Penelope's public point:\n\tx: {P[0]}\n\ty: {P[1]}")

# q = randint(2, p40)
q = 856017483482
print(f"Quintin's private scaler is {q}")

Q = q * G
print(f"Quintin's public point:\n\tx: {Q[0]}\n\ty: {Q[1]}")

Penelope's public point:
x: 714049738717
y: 803151079992

Quintin's private scaler is 856017483482
Quintin's public point:

x: 724364265403
y: 770301686565

Penelope can use her secret p along with Quintin’s public key Q to compute a point. Quintin can
compute the same key using his secret and Penelope’s public key. Again, these computations are
fast.

[71]: K_p = p * Q
K_q = q * P

if K_q == K_p:
print("Penelope and Quintin computed the same point:")
print(f'\tx: {K_q[0]}\n\ty: {K_q[1]}')

else:
print("uh-oh. EC demo did not work.")

Penelope and Quintin computed the same point:
x: 412011888668
y: 543936543559

And this all works because the scaler (integer) multiplication behaves as expected. Even though
Penelope nor any eavesdropper never learn Quintin’s private integer, p, when Penelope computes
𝐾𝑝 = 𝑝𝑄 that is the same as 𝐾𝑝 = 𝑝𝑞𝐺 because 𝑄 = 𝑞𝐺.

12



𝐾𝑝 = 𝑝𝑄 = 𝑝(𝑞𝐺) = (𝑝𝑞)𝐺
𝐾𝑞 = 𝑞𝑃 = 𝑞(𝑝𝐺) = (𝑞𝑝)𝐺

And so the keys that they each compute are the same, even though no secret information needed
to be transmitted.
An attacker with knowledge of one of the public keys, say P and the (public) group parameters
(curve definition and base point G) would be able to learn the shared K if they could solve

𝑃 = 𝑝𝐺

for little p.
The 20-bit security I have for this curve is within easy breaking on this machine, but it still
illustrates that finding little p given G and P is much harder than computing P given p and G.

[36]: # time discrete_log(P, base = G, ord = n40, operation = '+')

Running
time discrete_log(P, base = G, ord = n40, operation = '+')

Yielded
CPU times: user 24.8 s, sys: 536 ms, total: 25.4 s
Wall time: 27.4 s
266038276613

Contrast that 25 seconds with few milliseconds to compute p*G.
As with the integer field stuff. There is a lot more to actual turn this into a secure system and
protocol. This all is only used to illustrate how a (presumed) non-deterministic polynomial-time
(NP) can be turned into (what can be further developed as) a public key system. But mostly what
this is to illustrate is that we can look at things like cyclic finite fields and see that properties that
hold of one (integer fields with the right sort of primes) can hold of another (elliptic curves of the
right sort.)
There are many reasons to prefer elliptic curve cryptography over integer groups for this stuff. One
of them is that to get a security at around the level of 128-bits, we need keys of 3072 bits with
integers, but only 256 bits for ECC.

3 Appendix: Making my demo curve
I really want to run the discrete_log() operation on my machine with its mere 8 GB of memory.
So I wish to have a curve with about 20 bit security. Because I would like the curve to have the
other properties of curves of this sort (at least to the standards of 1998) I am (mostly) following
Annex A.3.2 of ANSI X9.62-1998. (I will skip some of the checks)
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I need a 40 bit prime for the integer field that the curve is defined over. I pick one at random, and
define the field. (Don’t worry about the difference between a field and a group, but this is the first
time we need a field. All fields are groups, but not all groups are fields.)

[72]: # p40 = random_prime(2^40, lbound = 2^39)
p40 = 872078115079

F40 = GF(p40)

The standards parameterize creation in terms of strength using something called ‘𝑟min’. Things like
the size of the prime are supposed to be defined in terms of it. I am going the other way around.
Because we are working with such small numbers, we can eyeball things instead of looping through
paramater creations to see if we get a group with a large subgroup

[73]: r_min = 4 * sqrt(p40)

l_max = 255 # for "nearly prime" computation

# just pick a and b at random

# a40 = F40.random_element()
a40 = F40(522510265620)
# b40 = F40.random_element()
b40 = F40(189830553521)

print(f'a: {a40}')
print(f'b: {b40}')

# check the 4a3 + 27b^2 condition
if F(4*a^3 + 27*b^2) == 0:

print("we failed that condition")

# Create a candidate curve
EC = EllipticCurve([a40, b40])

a: 522510265620
b: 189830553521

We now need see if the group defined by our a, b, and p has a large subgroup. There are fancy
algorithms for that (and finding the largest subgroup), but because the numbers we have here are
no more than 40 bits, I can just factor the cardinality of the group.
I could have written a loop to generate a and b repeatedly and tested for the sizes of subgroups
(which is where 𝑙min would have come in), but as I found one after just a couple of trials, I just
manually reran this until I got numbers that I liked.

[74]: u40 = EC.cardinality()

# instead of writing the code for finding "nearly prime" orders,
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# I will just factor and eyeball the results until we get one
# with a small _h_
print(f'|EC| = {u40} = {factor(u40)}')

# we have a winner with the a and b that are now hardcoded above.
h40 = 2
n40 = 436039332233

|EC| = 872078664466 = 2 * 436039332233

Curves that fail to satisfy the MOV condition (Menezes, Okamoto and Vanstone) reduce the DLP
to a smaller field. It, and the test for it, is described in §A.1.1 of ANSI X9.62-1998.

[75]: def satisfies_mov(B, p, n):
F = GF(n)
p = F(p)
t = F(1)
for _ in range(1, B):

t = t * p
if t == 1:

return(False)
return(True)

satisfies_mov(20, p40, n40)

[75]: True

Another condition to check is whether the curve is “anomalous”. A very simple test. I am not sure
why to run this, as any anomalous curve would instantly fail MOV.

[76]: if p40 == u40:
print("Uh-oh. Curve is anomalous. Pick a different a and b")

else:
print("Curve is not anomalous.")

Curve is not anomalous.

We now have our curve

[77]: print(EC)

Elliptic Curve defined by y^2 = x^3 + 522510265620*x + 189830553521 over Finite
Field of size 872078115079

3.1 Generating the generator
Now on to base point generation. We need to find a point that is in the big subgroup. Here we
have the algorithm from §A.3.1, though I could have just generated random G until G.order()
== n40, but showing this algorithm helps communicate what is meant by order of an element in a
cyclic group.
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[80]: def gen_base(E, n, h):
G = E(0) # because Python doesn't have a do-while
while G == E(0):

R = E.random_element()
G = h * R

if n * G != E(0):
raise ValueError("wrong order")

return G

# G = gen_base(EC, n40, h40)
G = EC([842965367165, 470264993162])

[81]: print(f'Base point:\n\tx: {G[0]}\n\ty: {G[1]}')
print(f'order of G: {G.order()}')

Base point:
x: 842965367165
y: 470264993162

order of G: 436039332233

We now have a curve and a base point.

4 Appendix: Figure 12–2
This is an attempt to replicate the examples in chapter 12

[82]: FF = GF(191)
EC = EllipticCurve(FF, [-4, 0])
print(EC)

Elliptic Curve defined by y^2 = x^3 + 187*x over Finite Field of size 191

[83]: plot(EC)
[83]:
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The left hand side of the question is 𝑦2 so if we were dealing with real numbers, there would be
positive and negative values for each x value. But in our integer field, everything is modulo 191,
so the points are reflected around 96.

[84]: G = EC.gens()[0]
print(f"generator G is {G.xy()} with order {G.order()}")

generator G is (121, 70) with order 96
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