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POLY NOTATION

Definition (poly(𝑛))
• We write “poly(𝑛)” to mean polynomial in 𝑛
• We write “poly(|𝑥|)” to mean polynomial in the size of 𝑥

Typically ‘𝑛’ is used to refer to the size of an input in these
contexts.
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Poly notation

1. poly(|𝑥|) is (almost always) the same as poly(log 𝑥).
2. In much earlier sessions we talked about indistinguishable from
random. “Perfect” meant tha there was no algorithm which
could do the thing, while “cryptographic” or ”assymtotic” meant
there was no poly(𝑛) algorithm that could do the thing.



DLP

When 𝑝 is appropriately chosen, and 𝑔 is a generator for ℤ×
𝑝 ,

there is a poly(|𝑝|) algorithm to compute 𝐴 in (1)

𝐴 = 𝑔𝑎 (mod 𝑝) (1)

but there is no poly(|𝑝|) algorithm to compute 𝑎 in (2).

𝑎 = log𝑔 𝐴 (mod 𝑝) (2)
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We are going to turn the DLP into useful
cryptography
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ALL IN ℤ×
𝑝

• Unless otherwise stated, all of the math that follows is
within the abelian finite cyclic group ℤ×

𝑝 in which 𝑔 is a
generator.

• The group parameters, 𝑝 and 𝑔, are not secret.
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DIFFIE-HELLMAN KEY EXCHANGE (DHKE)



ALICE PICKS A SECRET

Alice picks a secret, little 𝑎, and generates a public big 𝐴.

𝐴 = 𝑔𝑎 (3)

Bob does similarly
𝐵 = 𝑔𝑏 (4)
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NEVER SENDING SECRETS

• Alice sends 𝐴 to Bob.
• Alice never transmits 𝑎.
• Bob sends 𝐵 to Alice.
• Bob never transmits 𝑏.
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COMPUTING KEYS

Alice knows 𝑎 and 𝐵. She computes

k𝐴 = 𝐵𝑎 (5)

Bob knows 𝑏 and 𝐴. He computes

k𝐵 = 𝐴𝑏 (6)
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DECONSTRUCTING k𝐴,𝐵

k𝐴 = 𝐵𝑎

= (𝑔𝑏)𝑎

= 𝑔𝑎𝑏
(7)

k𝐵 = 𝐴𝑏

= (𝑔𝑎)𝑏

= 𝑔𝑏𝑎

(8)

J. Goldberg () 7



A COMMON KEY

k𝐴 = 𝑔𝑏𝑎 = 𝑔𝑎𝑏 = k𝐵 (9)
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A SMALL EXAMPLE, k𝐴

With

𝑝 = 59; 𝑔 = 2; 𝑎 = 20; 𝐴 = 𝑔𝑎 = 4; 𝑏 = 9; 𝐵 = 𝑔𝑏 = 40 (10)

k𝐴 = 𝐵𝑎 = 4020 = 5
= (𝑔𝑏)𝑎 = (29)20 = 5
= 𝑔𝑎𝑏 = 29⋅20 = 2180 = 5
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A SMALL EXAMPLE, k𝐵

Again with

𝑝 = 59; 𝑔 = 2; 𝑎 = 20; 𝐴 = 𝑔𝑎 = 4; 𝑏 = 9; 𝐵 = 𝑔𝑏 = 40 (10)

k𝐵 = 𝐴𝑏 = 469 = 5
= (𝑔𝑎)𝑏 = (220)9 = 5
= 𝑔𝑏𝑎 = 220⋅9 = 2180 = 5
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PROTOCOL NOTATION

DHKE with 𝑔 a generator of ℤ×
𝑝

Alice Bob
𝑎 ←$ ℤ×

𝑝 𝑏 ←$ ℤ×
𝑝

𝐴 ← 𝑔𝑎 𝐵 ← 𝑔𝑏

𝐴

𝐵

k𝐴 ← 𝐵𝑎 k𝐵 ← 𝐴𝑏

Figure 1: Example protocol diagram
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DIFFIE-HELLMAN KEY EXCHANGE (DHKE)

JUST A TOY



DISTINGUISHABLE FROM RANDOM

• k𝐴 is not indistinguishable from random
• We need to use a keyed hash, like HMAC, really get a key,
• The HMAC key does not need to be secret
• HKDF wraps HMAC in exactly the way we need.
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Diffie-Hellman Key Exchange (DHKE)

Just a toy
Distinguishable from random

1. 𝑔𝑎𝑏 < 𝑝. Unless 𝑝 is a power of 2 (it isn’t) there will be bit
sequences that can’t ber 𝑔𝑎𝑏.

2. Other keyed hashes could be used. BLAKE3 is an obvious
candidate.

3. One might think that a small distinguishability in the leading bit
doesn’t matter. And maybe it doesn’t, but other security proofs
depend in indistinguishability.



OPEN TO MANIPULATION

• DHKE works against a passive attacker who can observe
the exchange

• DHKE does not work if attacker can interfere with
communication

• DHKE needs a mutually authenticated channel with data
integrity
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A LARGE SUBGROUP

• Solving a discrete logarithm in ℤ×
𝑝 can be broken down

into solving the problem for all of the subgroups of ℤ×
𝑝 .

• Picking a safe prime 𝑝 ensures that there will be a large
subgroup of size (𝑝 − 1)/2.
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Diffie-Hellman Key Exchange (DHKE)

Just a toy
A large subgroup

1. With 𝑝, 𝑞 both prime and 𝑝 = 2𝑞 + 1 the term for 𝑞 is a Sophie
Germain prime.

2. Germain proved Fermat’s Last Theorem held for primes of this
sort.

3. This is the only relevance of Fermat’s Last theorem to what we
do. Later, we will talk about Fermat’s Little Theorem.



COMPUTING DECISION PROBLEMS



TWO MORE PROBLEMS

Definition (CDH)
Computing 𝑔𝑎𝑏 given only 𝑝, 𝑔, 𝑔𝑎, 𝑔𝑏 is known as the
“Computational Diffie-Hellman” problem.

Definition (DDH)
Distinguishing between 𝑔𝑎𝑏 and 𝑔𝑟 for some random 𝑟 given
only 𝑝, 𝑔, 𝑔𝑎, 𝑔𝑏 is known as the “Decisional Diffie-Hellman”
problem.
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Computing decision problems

Two more problems

1. The DDH does not hold for ℤ×
𝑝

2. Given 𝑔𝑥 it is easy to compute whether 𝑥 is odd or even. And so
given 𝑔𝑎 and 𝑔𝑏 can know whether 𝑎𝑏 is odd or even. This gives
us a 0.75 probability of determining whether we got 𝑔𝑎𝑏 or 𝑔𝑟.

3. There are ways to tinker with the group to avoid this.



RELATIVE HARDNESS

• The DLP is at least as hard as the CDH problem.
• The CDH problem is at least as hard DDH.
• This means that the DDH is the strongest condition.
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RELATIVE CONDITIONS

• Something that depends on the hardness of the DLP does
not necessarily depend on the hardness of the CDH.

• Something that depends on the hardness of the CDH also
depends on the hardness of the DLP, but might not
depend on the hardness of the DDH.

• Something that depends on the hardness of the DDH also
depends on the hardness of the CDH and DLP.

• This means that the DDH is the strongest condition.
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PROBLEMS AND ASSUMPTIONS

• The DLP assumption is that the DLP is hard.
• The CDH assumption is that the CDH problem is hard.
• The DDH assumption is that the DDH problem is hard.
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ASSUME THE LEAST

We prefer cryptographic systems that rely on the weakest
assumptions.

Example
Imagine two cryptographic schemes 𝛼 and 𝛽 which differ
only in that 𝛼’s security relies on the DDH while 𝛽’s does not,
we should prefer 𝛽.
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ELGAMAL PUBLIC KEY ENCRYPTION



ELGAMAL ENCRYPTION

1. Alice picks secret 𝑎 and publishes 𝐴 = 𝑔𝑎

2. Bob picks an ephemeral secret 𝑏 and computes a shared
secret 𝑠 = 𝐴𝑏.

3. Bob computes 𝐵 = 𝑔𝑏.
4. To encrypt message 𝑚 Bob computes 𝑐 = 𝑚 ⋅ 𝑠.
5. Bob sends 𝐵 and 𝑐 to Alice.
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DECRYPTION

1. Alice computes 𝑠 = 𝐵𝑎

2. Alice computes 𝑠−1 (There is a fast way to do this)
3. Alice computes 𝑚 = 𝑐 ⋅ 𝑠−1
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ElGamal Public Key Encryption

Decryption

1. This is what I get for teaching DH before RSA. I haven’t taught
how to compute modular inverses.



BOB ENCRYPTS 𝑚 = 19 TO ALICE

𝑝 = 23; 𝑔 = 5; 𝑎 = 17; 𝐴 = 𝑔𝑎 = 15; 𝑏 = 10; 𝑚 = 19 (11)

𝑠 = 𝐴𝑏 = 1510 = 3
𝐵 = 𝑔𝑏 = 510 = 9
𝑐 = 𝑚 ⋅ 𝑠 = 19 ⋅ 3 = 11
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ALICE DECRYPTS

𝑝 = 23; 𝑔 = 5; 𝑎 = 17; 𝐴 = 𝑔𝑎 = 15; 𝑏 = 10; 𝑚 = 19 (11)

𝑠 = 𝐵𝑎 = 917 = 3
𝑠−1 = = 3−1 = 8

𝑚 = 𝑐 ⋅ 𝑠−1 = 11 ⋅ 8 = 19
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