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REVIEW OF INTEGER DHKE



ALICE PICKS A SECRET

Alice picks a secret, little 𝑎, and generates a public big 𝐴.

𝐴 = 𝑔𝑎 (1)

Bob does similarly
𝐵 = 𝑔𝑏 (2)

1



NEVER SENDING SECRETS

• Alice sends 𝐴 to Bob.
• Alice never transmits 𝑎.
• Bob sends 𝐵 to Alice.
• Bob never transmits 𝑏.
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COMPUTING KEYS

Alice knows 𝑎 and 𝐵. She computes

k𝐴 = 𝐵𝑎 (3)

Bob knows 𝑏 and 𝐴. He computes

k𝐵 = 𝐴𝑏 (4)
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COMMON KEY k𝐴,𝐵

k𝐴 = 𝐵𝑎 = (𝑔𝑏)𝑎 = 𝑔𝑎𝑏

k𝐵 = 𝐴𝑏 = (𝑔𝑎)𝑏 = 𝑔𝑏𝑎

k𝐴 = 𝑔𝑏𝑎 = 𝑔𝑎𝑏 = k𝐵

(5)
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IN AN ELLIPTIC CURVE GROUP



JUST ANOTHER ABELIAN CYCLIC GROUP

• When defined appropriately an elliptic curve E𝑝 with point
addition forms an abelian cyclic group

• Repeated point addition (analogous to exponentiation in
integer groups) can be computed efficiently

• The DLP is at least as hard in E𝑝 as it is in ℤ×
𝑝
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DLP IN ELLIPTIC CURVE GROUPS



GENERALIZING THE DLP

The cryptographically useful properties of the discrete
logarithm problem requires a finite cyclic group (with a few
other conditions on the group).

The group does not need to have integer elements and
modular multiplication. It can be constructed from other
things if it has the right structure. The term “generalized DLP”
(GDLP) is sometimes used to talk about this generalization of
the the DLP.

6



NOTATION WARS

Operation ℤ×
𝑝 E𝑝

Op. name mod. multiplication point addition
𝑎𝑏 𝑃 + 𝑄

Repeated exponentiation scalar multiplication
𝑥𝑛 𝑛𝑃

From generator 𝐴 = 𝑔𝑎 𝑃 = 𝑑𝐺
Logarithm Find 𝑎 given 𝐴, 𝑔 Find 𝑝 given 𝑃 , 𝐺

log𝑔 𝐴 𝑃/𝐺

Table 1: Terms and notation for integer and elliptic curve groups
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Elliptic Curve Diffie-Hellman
DLP in elliptic curve groups

Notation wars

1. ECs have a distant history in geometry, and so points are
typically referred to using capital letters like 𝑃 and 𝑄, while in
integer groups 𝑝 is often used for the prime modulous.

2. When talking abstractly about groups, 𝐺 is often used to refer to
a group, but with elliptic curves, it is often used to describe the
generator or base point.

3. “Scalar” means ordinary number. 𝑛 is not a point.



PENELOPE AND QUINTIN PICK A SECRETS

Penelope picks a secret, 𝑑𝑃 , and generates a public 𝑃 .

𝑃 = 𝑑𝑃 𝐺 (6)

Quintin does similarly
𝑄 = 𝑑𝑄𝐺 (7)
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Elliptic Curve Diffie-Hellman
DLP in elliptic curve groups

Penelope and Quintin pick a secrets

1. 𝑑𝑃 is Penolope’s decryption secret. We don’t use ‘𝑝’ and ‘𝑞’
because those have other meanings in defining an elliptic curve.

2. We use ‘𝑃 ’ and ‘𝑄’ because ‘𝐴’ and ‘𝐵’ are used for other things
when talking about elliptic curves.



NEVER SENDING SECRETS

• Penelope sends 𝑃 to Quintin.
• Penelope never transmits 𝑑𝑃 .
• Quintin sends 𝑄 to Penelope.
• Quintin never transmits 𝑑𝑄.
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COMPUTING KEYS

Penelope knows 𝑑𝑃 and 𝑄. She computes

k𝑃 = 𝑑𝑃 𝑄 (8)

Quintin knows 𝑑𝑄 and 𝑃 . He computes

k𝑄 = 𝑑𝑄𝑃 (9)
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COMMON KEY k𝑃,𝑄

k𝑃 = 𝑑𝑃 𝑄 = 𝑑𝑃 (𝑑𝑄𝐺) = 𝑑𝑃 𝑑𝑄𝐺
k𝑄 = 𝑑𝑄𝑃 = 𝑑𝑄(𝑑𝑃 𝐺) = 𝑑𝑄𝑑𝑃 𝐺

(10)
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ALL THE THINGS

All the things we said about constructions based on
Diffie-Hellman in ℤ×

𝑝 apply to E𝑝, including, but not limited to

• Need to hash output to get things that work as keys
• Distinction between Decisional and Computational
assumptions

• Vulnerability to Cat in the Middle attacks.
• Existence of poly(|𝑝|) on suitable quantum computers
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POINT ADDITION



IT’S A SET OF POINTS

Definition (Elliptic curve)
An elliptic curves is the set of points (𝑥, 𝑦) defined by

𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 (11)

and a special point called ‘0’.
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It’s a set of points

1. This is the form of a Weierstrass elliptic curve. There are others.



KEEPING 𝑥, 𝑦 ∈ ℝ

y

x

y
2 = x

3
− 2x+ 2

Figure 1: Elliptic curve over the reals
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Point addition

Keeping 𝑥, 𝑦 ∈ ℝ

1. In order to draw pretty pictures explaining point addition, we
will (for the time being) let 𝑥 and 𝑦 be real numbers. Here we
will define curves “over the reals.”



A PICTURE WITH POINTS

y

x

y2 = x3
− 2x+ 2

P

Q

Figure 2: Same curve with points 𝑃 and 𝑄
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A PICTURE WITH POINTS
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Point addition

A picture with points

1. These 𝑃 and 𝑄 have nothing to do with Penelope or Quintin.



THREE POINT RULE

Rule of Three
Every straight line that intersects the curve at least twice
must intersect it exactly three times.
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THREE POINT RULE ILLUSTRATED

P

Q

Figure 3: Line through 𝑃 and 𝑄 crosses curve at another point
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𝑃 + 𝑄

P

Q

P +Q

Figure 4: The vertical reflection of the third intersecting point is
𝑃 + 𝑄
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THREE POINT RULE AND TANGENTS

Tangents count double
A line that is tangent to a point counts as intersecting that
point twice.

Three point rule and tangents
A line that is tangent to a point on the curve must intersect
the curve at exactly one other point.
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3 POINT RULE AND TANGENTS

P

Figure 5: A line tangent to 𝑃 intersects the curve at additional point
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Point addition

3 point rule and tangents

1. One way to think about this is that the line through 𝑃 and 𝑃 is
the line tangent to the curve at 𝑃 .



POINT ADDITION

𝑃 + 𝑃 + ⋯ + 𝑃



𝑛𝑃

We will want to add 𝑃 to itself multiple times.

2𝑃 = 𝑃 + 𝑃
3𝑃 = 𝑃 + 𝑃 + 𝑃
6𝑃 = 𝑃 + 𝑃 + 𝑃 + 𝑃 + 𝑃 + 𝑃
𝑛𝑃 = 𝑃 + 𝑃 + ⋯ + 𝑃 + 𝑃⏟⏟⏟⏟⏟⏟⏟⏟⏟

with 𝑃 appearing 𝑛 times

(12)
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2𝑃 (OR “POINT DOUBLING”)

P

2P

Figure 6: Point doubling: 𝑃 + 𝑃
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3𝑃 = 𝑃 + 2𝑃

P

2P

3P

Figure 7: 3𝑃 = 𝑃 + 2𝑃
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4𝑃 = 𝑃 + 3𝑃

P

3P

4P

Figure 8: 4𝑃 = 𝑃 + 3𝑃
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4𝑃 = 𝑃 + 3𝑃

P

3P

4P

Figure 8: 4𝑃 = 𝑃 + 3𝑃20
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Point addition

𝑃 + 𝑃 + ⋯ + 𝑃
4𝑃 = 𝑃 + 3𝑃

1. It takes three point additions to get to 4𝑃 this way: 𝑃 + 𝑃 ;
𝑃 + 2𝑃 ; and 𝑃 + 3𝑃 .



POINT ADDITION

SPEED-UP



A FASTER WAY TO 4: 4𝑃 = 2𝑃 + 2𝑃

2P

4P

Figure 9: Computing 4𝑃 with only two additions: 𝑃 + 𝑃 and 2𝑃 + 2𝑃

25



A FASTER WAY TO 4: 4𝑃 = 2𝑃 + 2𝑃

2P

4P

Figure 9: Computing 4𝑃 with only two additions: 𝑃 + 𝑃 and 2𝑃 + 2𝑃20
24
-0
5-
18

Elliptic Curve Diffie-Hellman
Point addition

Speed-up
A faster way to 4: 4𝑃 = 2𝑃 + 2𝑃

1. It takes two point additions to get to 4𝑃 this way.



16𝑃

Computing 16𝑃 takes 4 point doublings

• 2𝑃 = 𝑃 + 𝑃
• 4𝑃 = 2𝑃 + 2𝑃
• 8𝑃 = 4𝑃 + 4𝑃
• 16𝑃 = 8𝑃 + 8𝑃
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25𝑃

Computing 25𝑃 takes 4 point doublings and two additions

• 2𝑃 = 𝑃 + 𝑃
• 4𝑃 = 2𝑃 + 2𝑃
• 8𝑃 = 4𝑃 + 4𝑃
• 16𝑃 = 8𝑃 + 8𝑃
• 24𝑃 = 16𝑃 + 8𝑃
• 25𝑃 = 24𝑃 + 𝑃
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25𝑃

25𝑃 = 16𝑃 + 8𝑃 + 𝑃
= 24𝑃 + 23𝑃 + 20𝑃
= 24𝑃 + 23𝑃 + 0 + 0 + 20𝑃
= 1 ⋅ 24𝑃 + 1 ⋅ 23𝑃 + 0 ⋅ 22𝑃 + 0 ⋅ 21𝑃 + 1 ⋅ 20𝑃

25 = 1 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20

= 0b11001
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DOUBLE AND ADD

Class Point: ...
def scaler_multiply(self, n: int) -> 'Point':
"""returns n * self"""
sum = self.curve.PAI # additive identity
doubled = self
for bit in lsb_to_msb(n):

if bit == 1:
sum += doubled

doubled = doubled.double() # toil & trouble
return sum
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Point addition

Speed-up
Double and Add

1. PAI is the Point at Infinity for the curve; double() doubles.
2. If the input has 𝑏 bits, the algorithm does 𝑏 − 1 doublings. For
each 1 bit, it does a non-doubling addition.

3. I originally just wanted to write that one method for displaying
here, but I ended up writing a whole EC calculator around it.
See double-and-add.py in the source directory.

4. Do not use that double-and-add.py code for anything. Its
only role is to be a context for illustrating the
scalar_multiply() method.

https://github.com/jpgoldberg/sec-training//-/tree/main/2022-03-11/double-and-add.py


EXPONENTIAL SPEEDUP

𝑔(𝑑) = 𝑑𝐺 Using repeated addition (13)
𝑓(𝑑) = 𝑑𝐺 Using double-and-add algorithm (14)

𝑓(𝑥) is exponentially faster than 𝑔(𝑥)
𝑔(𝑥) ∈ O(𝑥) = O(2|𝑥|)
𝑓(𝑥) ∈ O(log2 𝑥) = O(|𝑥|) (15)
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Elliptic Curve Diffie-Hellman
Point addition

Speed-up
Exponential speedup

1. 𝑔(𝑑) takes 𝑑 − 1 point additions.
2. 𝑓(𝑑) takes less than 2 log2 𝑑 additions.



SQUARE AND MULTIPLY

ℤ×
𝑝 E𝑝

Group Operation 𝑎𝑏 𝑃 + 𝑄
Repeated 𝑥𝑛 𝑛𝑃
From generator 𝐴 = 𝑔𝑎 𝑃 = 𝑑𝐺
Logarithm log𝑔 𝐴 𝑃/𝐺
Fast algorithm square-and-multiply double-and-add

Table 2: More terms and notation for integer and elliptic curve
groups
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Point addition

Speed-up
Square and multiply

1. I’m sorry. There is nothing I can do about the fact that the group
operation we need over integers is modular multiplication and
the one for elliptic curves is point addition.

2. When thinking about both kinds of groups, it is useful to think
of multiplication in the integer group as being like addition in
the elliptic curve group.

3. When we get to integer fields, as we will, we will need to stop
making that comparison.

4. I’m sorry. The only way to avoid all this “what is addition and
what is multiplication” stuff would have been to present all of
this at a higher level of abstraction, which would have
introduced way more unfamiliar notation.



POINT ADDITION

SIDE CHANNELS ARE REAL



LEAKS LIKE A SIEVE

Figure 10: Leeks like a sieve
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Point addition

Side channels are real
Leaks like a sieve

1. tbh, neither a spatter screen nor a colander are sieves, but they
are what I had at home.



POWER CONSUMPTION JUMPS ON 1 BITS

• Each 0 bit in the secret leads to a doubling operation.
• Each 1 bit in the secret leads to a doubling operation and
an adding operation.

• These operations take time and consume power.
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SMART CARDS

• Smart cards are powered by their readers;
• Malicious readers are in a very good position to measure
card power consumption;

• Malicious readers are in a very good position to choose
plaintext or ciphertext;

• Laboratory studies in the 1990s demonstrating the ease at
which readers could exact the secret keys from cards led
to a redesign of cards.[Koc96; KJJ99; AK96]
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Point addition

Side channels are real
Smart cards

1. Smartcards used RSA, and so the attack is on the analogous
“square-and-multiply” algorithm for exponentiation. Remember
that in a multiplicative integer group we use modular
multiplication as the group operation, but in elliptic curve
groups we use point addition as the group operation.



LIBGCRYPT LEAKED THROUGH WALLS

• Until 2016 libgcrypt used naive double-and-add;
• libgcrypt is used by GnuPG;
• The electromagnetic leak of from changes in power
consumption could be detected through walls;

• Inexpensive equipment was able to recover most of the
bits of a secret through a wall;

• Enough bits were recovered to allow for brute forcing the
remaining bits. [Gen+16]
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KEY BITS

Figure 11: Figure 4 from [Gen+16]. Key bits captured in this 1.6
millisecond period are (probably) 100110110001.
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KEY BITS

Figure 11: Figure 4 from [Gen+16]. Key bits captured in this 1.6
millisecond period are (probably) 100110110001.20
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Point addition

Side channels are real
Key bits

1. Well, it is a little less direct to get the actual key bits.
2. Algorithm works from the least significant end, so read those
bits right to left.



GROUPTHINK



GROUPTHINK

ZERO AND INFINITY



ZERO IDENTITY

• A group needs an identity element;
• Do vertical lines satisfy the three point rule?
• We call our operation “addition” so identity should be
analogous to zero;

• Solution: We add a zero element, 0 (often written ‘O’).
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Groupthink

Zero and infinity
Zero identity

1. I am using ‘0’ to avoid confusion with the big-O notation.



DEFINING NOTHING AND EVERYTHING

• We define E𝑝 to be all of the points that satisfy the
equation plus our additive identity 0;

• We define addition so that 𝑃 + 0 = 𝑃 ;
• We define addition of 𝑃 and its vertical reflection to be 0;
• For weird geometry reasons, 0 is often called “the point at
infinity”.
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Groupthink

Zero and infinity
Defining nothing and everything

1. “Weird geometry” is projective geometry. It really does all make
sense in projective geometry.



𝑃 + −𝑃

P

P +−P = 0

−P

Figure 12: 𝑃 plus its vertical reflection, −𝑃 , is 0.
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GROUP LAWS

An elliptic curve, E, including the point at infinity 0, with
addition suitably defined is an abelian group because for all
𝑃 , 𝑄, 𝑅 ∈ E:

• It is closed. 𝑃 + 𝑄 ∈ E;
• It is abelian (commutative). 𝑃 + 𝑄 = 𝑄 + 𝑃 ;
• There is an identity element, 0 such that 𝑃 + 0 = 𝑃 ;
• Every element has an inverse; There is an element, which
we will write ‘−𝑃 ’, such that 𝑃 + −𝑃 = 0;

• It is associative (𝑃 + 𝑄) + 𝑅 = 𝑃 + (𝑄 + 𝑅).
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GROUPTHINK

TOWARD FINITENESS



FIELDS

• All fields are groups. Not all groups are fields;
• Fields have two operations, which at the moment we will
call “addition” and “multiplication”;

• Both have identity elements; The additive identity element
is 0. The multiplicative identity is 1;

• Both operations are closed, and both are associative;
• Every element of the field has an additive inverse, and
(almost) every element has a multiplicative inverse.

41



MULTIPLICATION PROPERTIES

Definition (Multiplicative inverse in Fields)
All elements of a field must have a multiplicative inverse
except for the additive identity, 0. That is, if 𝑎 is a member of
the field and 𝑎 ≠ 0, then there must exist an 𝑎−1 in the field
such that 𝑎𝑎−1 = 1.

Definition (Distributive properties)
Multiplication distributes over addition. That is for all 𝑎, 𝑏, 𝑐
in the field, 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐.
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Groupthink

Toward finiteness
Multiplication properties

1. The “except for the additive indentity” clause is just saying that
you can’t divide by zero.

2. These are the only two things – that the additive identity does
not have a multiplicative inverse, and that multiplication
distributes over addition – in the definition of a field that
distinguish between the one we call “addition” and the one we
call “multiplication”.



ELLIPTIC CURVES ARE NOT FIELDS

Reminder: elliptic curves are groups
Elliptic curves are groups. The have only one operation, point
addition. Point addition over properly defined elliptic curves
satisfies all of the group properties.
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WHY TALK OF FIELDS?

Elliptic curves, which are groups, are defined over fields.
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Groupthink

Toward finiteness
Why talk of fields?

1. Hopefully this will become clearer shortly



A RATIONAL FIELD

The set of rational numbers, ℚ, are those numbers which are
ratios of whole numbers. Ordinary addition and multiplication
over ℚ is a field.

• Additive identity is 0. Multiplicative identity is 1.
• Addition and multiplication are closed.
• Every 𝑎 has an additive inverse, −𝑎.
• Every 𝑎 other than 0 has a multiplicative inverse, 1

𝑎 or 𝑎−1.
• Multiplication distributes. 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐.
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INTEGERS ARE NOT A FIELD

The set of integers, ℤ, with ordinary addition and
multiplication

• Is not a field;
• Not every integer has a multiplicative inverse. There is no
integer 𝑎 such that 2𝑎 = 1;

• ℤ with ordinary addition is a group.
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MODULAR ARITHMATIC TO THE RESCUE

The set of integers with all addition and multiplication done
modulo some prime 𝑝 is a field.

• It is written ‘ℤ𝑝’;
• It is a finite cyclic field.
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BAD NOTATION: ℤ×
𝑝 ≠ ℤ𝑝

ℤ×
𝑝 is not a field

• ℤ×
𝑝 is a group with a single operation.

• That single group operation in ℤ×
𝑝 just happens to be modular

multiplication.
• ℤ×

𝑝 does not contain 0.

ℤ𝑝 is a field

• ℤ𝑝 is a field with both modular addition and modular
multiplication;

• The multiplication operation ℤ𝑝 distributes over addition;
• The identity element of addition, 0, does not have a
multiplicative inverse.
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Toward finiteness
Bad notation: ℤ×

𝑝 ≠ ℤ𝑝

1. I’m so sorry. I have tried to protect you some of unfortunate
notation we encounter. But there isn’t anything I can do about
this one.

2. When we get to RSA, we will see that we can create
multiplicative groups for when the modulus is not prime.

3. I am strongly implying that the modulus for a finite field must
be prime. It’s not entirely true, but we don’t need to go into
extension fields unless we were to dive into the internals of AES.



DEFINING E OVER A FIELD

Definition
An elliptic curve is the 0 and the points (𝑥, 𝑦) satisfying

𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 (11)

And where 𝑥, 𝑦 are treated as members of a field.
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E𝑝

The elliptic curves used in cryptography are defined over a
finite field. All of the arithmetic (addition, multiplication,
inversion) for computing the 𝑥 and 𝑦 values of particular
points is performed modulo 𝑝. The result is an abelian finite
cyclic group with some very nice properties.
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CURVE E191

Definition (E191)
The finite curve from Chapter 12 is the point at infinity and
the set of points which satisfy the curve equation modulo 191.

E191 = {0} ∪ {(𝑥, 𝑦) ∣ 𝑦2 = 𝑥3 − 4𝑥 + 0 (mod 191)}

where 𝑥, 𝑦 ∈ ℤ.
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THE POINTS OF E191

50 100 150

50

100

150

Figure 13: All the points of E191 except for 0. The generator
𝐺 = (146, 131). 52



2𝐺

Figure 14: 𝐺 to 2𝐺
53



3𝐺

Figure 15: 𝐺 to 3𝐺
54



7𝐺

Figure 16: 𝐺 to 7𝐺
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(|𝐺| − 1)𝐺

Figure 17: 95𝐺 = (146, 60) = −𝐺. So 96𝐺 would be 0. Not
coincidentally, 96 = (𝑝 + 1)/2. 56



(|𝐺| − 1)𝐺

Figure 17: 95𝐺 = (146, 60) = −𝐺. So 96𝐺 would be 0. Not
coincidentally, 96 = (𝑝 + 1)/2.
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Example additions
(|𝐺| − 1)𝐺

1. I point this out as a kind of foreshadowing. It isn’t anything to
actually learn or understand at this point.

2. In the context where 𝑎 is a member of a group, |𝑎| is the “order
of 𝑎”. It is the number time times the group operation is
peformed on 𝑎 that brings you to the identity element.

3. I can’t really draw an arrow to 0. So I stopped at 95.



WHY ELLIPTIC CURVES



Isn’t this a lot of trouble and complexity when
we already can do what we need in a
multiplicative integer group, ℤ×

𝑝 ?
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SMALLER KEYS

We can get 128-bit security with 256-bit keys over elliptic
curves, while we need at least 3072-bit keys over ℤ×

𝑝 .
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SMALLER KEYS

We can get 128-bit security with 256-bit keys over elliptic
curves, while we need at least 3072-bit keys over ℤ×

𝑝 .
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Smaller keys

1. This is the most visible and salient advange of ECC, but it really
isn’t the most important.



FEWER ATTACKS ON DLP

• Pollard’s 𝜌 (rho) is a non-polynomial time attack on the
discrete logarithm;

• Pollard’s 𝜌 works both in E𝑝 and ℤ×
𝑝 ;

• There are faster (but still non-polynomial) solutions to the
DLP in ℤ×

𝑝 .
• Pollard’s 𝜌 is believed to the the fastest way to solve the
DLP in E𝑝.
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THE RIGHT LEVEL OF ABSTRACTION

• The better than Pollard’s 𝜌 approaches exploit the fact
that there are relationships among integers that are not
part of the group operation.

• Those relationships don’t get translated to relationships
between points on an elliptic curve.

• It would be possible to abstract a finite cyclic group to its
pure form, but that makes the memory requirement
needed to perform group operations at O(𝑝2).
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The right level of abstraction

1. An untrue example is that with two numbers we can say which
is larger, but that kind of relationship doesn’t exist among
points. (We can’t actually say which number is larger.)

2. There might be some faster way, but I am describing the best
algorithm off of the top of my head.



TOO ABSTRACT

∘ 0 p w q r f g h v j
0 0 p w q r f g h v j
r r f g h v j 0 p w q
p p w q r f g h v j 0
j j 0 p w q r f g h v
f f g h v j 0 p w q r
q q r f g h v j 0 p w
h h v j 0 p w q r f g
g g h v j 0 p w q r f
v v j 0 p w q r f g h
w w q r f g h v j 0 p

Figure 18: Group operation table with operation ∘ and identity
element 0. The only way to compute 𝑋 ∘ 𝑌 is to consult the table.
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POINT AT INFINITY

Figure 19: The additive identity, 0 (or O), is known as the point at
infinity



POINT AT INFINITY

Figure 19: The additive identity, 0 (or O), is known as the point at
infinity
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Point at infinity

1. Pointing hand src:
https://www.needpix.com/photo/825401/

2. At first I wanted to an Infinity Motors™ vehical, but I didn’t want
to spend more time on image editing.

https://www.needpix.com/photo/825401/


PROJECTIVE GEOMETRY

Definition
Projective geometry offers useful and coherent ways of
talking about points at infinity. It had its start in how to map
things in the three dimensional space into two dimensions.



A NEW PERSPECTIVE

Figure 20: Perugino’s Delivery of the Keys, c1481
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Figure 20: Perugino’s Delivery of the Keys, c148120
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A new perspective

1. Higher resolution availabe, but I didn’t want the slides to get to
big.

2. Jesus is deliverying the keys to Peter. It is very important that
the keys not be at the point at infinity.



PUNTO DEL CENTRO

Figure 21: From Leon Battista Alberti’s De Pintura, 1435



PUNTO DEL CENTRO

Figure 21: From Leon Battista Alberti’s De Pintura, 143520
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Punto del Centro

1. Alberti literally wrote to book on linear perspective and the
geometry of using vanishing points.



ALSO A CRYPTOGRAPHER

Figure 22: Alberti cipher disk. Alberti developed one of the first
polyalphabetic ciphers.



ALSO A CRYPTOGRAPHER

Figure 22: Alberti cipher disk. Alberti developed one of the first
polyalphabetic ciphers.
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Also a cryptographer

1. Points at infinity and elliptic curves came into cryptography in
the late 20th century. But both had been around for a while.



RESOURCES



RESOURCES

• These slides
• Sources

https://github.com/jpgoldberg/sec-training//public/s/ecdh.pdf
https://github.com/jpgoldberg/sec-training//-/tree/main/2022-03-11/
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