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We choose to go to the [factoring and the
discrete logarithm problems] and do the
other things, not because they are easy,
but because they are hard.

(with apologies to) JFK
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PROBLEMS

(Presumed) NP math problems that are turned into
cryptography

• Factoring
• Discrete logarithm (over integer groups)
• Discrete logarithm (over elliptic curves)
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FACTORING



FACTORING

if 𝑁 = 𝑝𝑞 and 𝑝 and 𝑞 are large prime numbers (with a few
additional restrictions) then computing 𝑝 and 𝑞 from 𝑁 is
believed to be hard. Verifying a candidate solution is easy.
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A 67 DIGIT EXAMPLE

• Factoring 1 025 046 047 436 407 593 990 706 183 629 376 939
000 352 221 561 805 965 005 888 683 119 takes about 9
seconds on my computer.

• Verifying that that the factors,
868 112 830 765 445 632 873 217 196 988 651 and
1 180 775 137 873 020 977 354 442 912 336 269, are correct takes
about 5 microseconds.
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FACTORING COMPLEXITY

• There is no proof that factoring is hard.
• It is believed to be hard.
• Verification is polynomial. So it is in NP.
• There is no proof about whether or not it is NP-complete.
• It is suspected that it is not NP-complete.
• The best known algorithms are sub-exponential.
• The problem can be solved in polynomial time on a
suitable quantum computer.
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Factoring complexity

That is a worrying amount of uncertainty.



THE DISCRETE LOGARITHM PROBLEM



WHY SO MUCH MATH?

Question
Why are we going to go into abstract mathematics learning
about the discrete logarithm problem (DLP) when it is so
much easier to understand the factoring problem?

Answer
Once we understand the DLP, it is easy to see how it can be
used for public key encryption, while understanding how to
turn the factoring problem into useful cryptography takes all
the math of understanding the DLP and more.
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THE DLP LIVES IN A GROUP

The discrete logarithm problem is stated with respect to an
abelian finite cyclic group.
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The discrete logarithm problem

The DLP lives in a Group

1. Sometimes, you will hear people talk about finite cyclic fields,
but all fields are groups so don’t worry about people saying
“field” unless they are specifically drawing attention to it.



UNHELPFULLY STATING THE OBVIOUS

Definition (Abelian finite cyclic group)
𝐻 is an abelian finite cyclic group if and only if

• 𝐻 is a group,
• and 𝐻 is abelian (commutative),
• and 𝐻 is finite,
• and 𝐻 is cyclic.
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Unhelpfully stating the obvious

1. All of the groups we are talking about are abelian
(commutative). If “∘’ is the group opperation than the group is
communative (abelian) iff 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 for all 𝑎 and 𝑏 in the group.

2. So far no one has followed my suggestion that
non-commutative groups be called “cainian”.



INTEGERS +

Addition over the integers forms an abelian group because

• Addition is closed. Adding two integers gets you another
integer. If 𝑎 and 𝑏 are both integers then 𝑎 + 𝑏 is an integer.

• Addition is commutative. If 𝑎 and 𝑏 are elements of the
group then 𝑎 + 𝑏 = 𝑏 + 𝑎 is an integer.

• There is an identity element (0) such that if 𝑎 is any
integer, then 𝑎 + 0 = 𝑎.

• Every integer has an inverse. If 𝑎 is an integer then there
is some integer which we will call ‘−𝑎’ such that
𝑎 + −𝑎 = 0 (where 0 is the identity element).

• The operation (addition) is associative. If 𝑎, 𝑏, 𝑐 are
integers then 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐.
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NEITHER FINITE NOR CYCLIC

Addition over the integers is an abelian group but it is not a
finite group, and it is not a cyclic group.

• The number of integers is not finite.
• This group is not cyclic (we will get to what that means)
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BYTES AND ⊕

Bitwise xor (⊕) over bytes (sequences of a 8 bits) is an abelian
group because

• Xor is closed. If 𝑎 and 𝑏 are both bytes then 𝑎 ⊕ 𝑏 is a byte.
• Xor is commutative. If 𝑎 and 𝑏 are both bytes then

𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎.
• There is an identity element (the byte 0b00000000 which
we will just call 0) such that if 𝑎 is any byte, then 𝑎 ⊕ 0 = 𝑎.

• Every byte has an inverse. If 𝑎 is a byte then there is some
byte which we will call ‘ ̄𝑎’ such that 𝑎 ⊕ ̄𝑎 = 0.

• The operation (xor) is associative. If 𝑎, 𝑏, 𝑐 are bytes then
𝑎 ⊕ (𝑏 ⊕ 𝑐) = (𝑎 ⊕ 𝑏) ⊕ 𝑐.
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Bytes and ⊕

1. In the case of xor, each element is its own inverse. This makes
xor magical and dangerous.



FINITE BUT NOT CYCLIC

Xor over bytes is an abelian finite abelian group, but it is not
cyclic.

• The number of bytes is finite (there are 256 of them)
• This group is still not cyclic.
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Finite but not cyclic

1. xor is cyclic on a per bit basis, but it is not for multi-bit
sequences.



ℤ×
7

The group ℤ×
7 has elements {1, 2, 3, 4, 5, 6}. The group

operation is multiplication modulo 7.

Groups of these sorts are often written as “ℤ∗
𝑛”, with an asterisk

instead of a multiplication symbol. I will use “ℤ×
𝑛” because

asterisks are ugly, and because it better communicates that
these are based on multiplication.
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ℤ×
7

1. The elements of the group are actually equivalence classes
instead of actual integers. But I hope to avoid having to go into
that.

2. I suspect that this is because the notation developed after
typewriters but before TEX.

3. Mathematicians tend to write “ℤ/𝑛ℤ”. Many fields (all puns
intended) in math make use of groups of that sort and have
varients of their own notation, depending on the distinctions
they need. In cryptography, we can get away with ℤ×

𝑝 .



MODULAR ARITHMATIC

As a refresher, consider addition modulo 7.

Today is Friday. What day of the week will it be after another

• 7 days?
• 14 days?
• 7000 days?
• 7𝑘 days? (where 𝑘 is an integer)
• 8 days?
• 7𝑘 + 1 days (where 𝑘 is an integer)
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ℤ×
7 IS A GROUP

ℤ×
7 is a group because

• It is closed. If 𝑎 and 𝑏 are elements then 𝑎 × 𝑏 (mod 7) is a
is an element.

• Multiplication modulo 7 is commutative. If 𝑎 and 𝑏 are
elements then 𝑎 × 𝑏 = 𝑏 × 𝑎 (mod 7).

• There is an identity element (1) such that if 𝑎 is an
element then 𝑎 × 1 = 𝑎 (mod 7).

• Every element has an inverse. If 𝑎 is an element then
there is some element which we will write “𝑎−1” such that
𝑎 × 𝑎−1 = 1 (mod 7).

• The operation is associative. If 𝑎, 𝑏, 𝑐 are elements then
𝑎 × (𝑏 × 𝑐) = (𝑎 × 𝑏) × 𝑐 (mod 7).
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FINITE AND CYCLIC

ℤ×
7 is an abelian finite cyclic group.

• The number of elements is finite (there are six of them)
• This group is cyclic.
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FINITE AND CYCLIC
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7 is an abelian finite cyclic group.
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Finite and cyclic

All of the examples for now will have 𝑛 be prime. ℤ×
𝑛 for non-prime 𝑛

is something we will get to when we start going into the math needed
for RSA.



THE DISCRETE LOGARITHM PROBLEM

CYCLES AND GENERATORS



ℤ×
7 MULTIPLICATION

× 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Figure 1: Multiplication table for ℤ×
7
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3 DOES THE ROUNDS IN ℤ×
7

3

×3

2

×3

6

×3

4

×3

5

×3

1

×3
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Cycles and generators
3 does the rounds in ℤ×

7

I use TikZ so rarely that I need to relearn it each time.



3 IS A GENERATOR IN ℤ×
7

When we multiply 3 by itself repeatedly, we cycle through every
element of the group before reaching the identity element (1).

30 × 3 = 1 × 3 = 31 = 3
31 × 3 = 3 × 3 = 32 = 2
32 × 3= 2 × 3 = 33 = 6
33 × 3= 6 × 3 = 34 = 4
34 × 3= 4 × 3 = 35 = 5
35 × 3= 5 × 3 = 36 = 1
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Cycles and generators
3 is a generator in ℤ×

7

For our purposes the distinction between “generator” and ”primative
element” is not useful. So I am avoiding that second term.



CYCLIC

Definition (Cyclic)
A group is cyclic if and only if it has at least one generator
that cycles through all members of the group.
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NOT EVERY ELEMENT IS A GENERATOR

When we multiply 2 by itself repeatedly in ℤ×
7 , we do not cycle

through every element of the group before reaching the
identity element (1).

20 × 2 = 1 × 2 = 21 = 2
21 × 2 = 2 × 2 = 22 = 4
22 × 2= 4 × 2 = 23 = 1
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Cycles and generators
Not every element is a generator

This generator defines a finite cyclic subgroup of ℤ×
7 with elements in

{1, 2, 4} while still using mod 7 multiplication.



LOGS AND EXPONENTS

Consider this equation where 𝑔 is a generator of the finite
cyclic group ℤ×

𝑝
𝐴 = 𝑔𝑎 (mod 𝑝) (1)

If we know 𝑔, 𝑝 and 𝑎 then it is easy to compute 𝐴.
Now suppose we know 𝑔, 𝑝, and 𝐴 and we wish to find 𝑎. This
is written as

𝑎 = log𝑔 𝐴 (mod 𝑝) (2)

and is called the discrete logarithm.
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THE DISCRETE LOGARITHM PROBLEM

BACK TO THE DLP



DISCRETE LOGARITMS ARE HARD

If 𝑝 is chosen with care then the DLP is believed to be hard.

• There is no proof that the DLP is hard.
• It is believed to be hard.
• Verification is polynomial. So it is in NP.
• There is no proof about whether or not it is NP-complete.
• It is suspected that it is not NP-complete.
• The best known algorithms are sub-exponential.
• The problem can be solved in polynomial time on a
suitable quantum computer.
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Back to the DLP
Discrete logaritms are hard

This slide should look familiar.



QUICK EXPONENTIATION

Our example group is ℤ×
𝑝 where 𝑝 is 112 bit prime number

𝑝 = 3 198 594 135 065 974 402 303 823 714 395 979
and our generator 𝑔 is 2.
If we set 𝑎 be some other 112 bit number,

𝑎 = 1 729 842 084 772 514 752 626 713 784 179 499

it takes less than 20 microseconds to compute 𝐴 = 𝑔𝑎 (mod 𝑝).

𝐴 = 𝑔𝑎 (mod 𝑝) = 1 142 203 535 203 822 438 059 381 484 091 159
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SLOW LOGARITHM

Given 𝑔, 𝑝, and 𝐴 from the previous slide, computing the
discrete logarithm 𝑎 = log𝑔 𝐴 (mod 𝑝) takes more than 11
seconds.
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DLP IN ELLIPTIC CURVE GROUPS



GENERALIZING THE DLP

The cryptographically useful properties of the discrete
logarithm problem requires a finite cyclic group (with a few
other conditions on the group).

The group does not need to have integer elements and
modular multiplication. It can be constructed from other
things if it has the right structure. The term “generalized DLP”
(GDLP) is sometimes used to talk about this generalization of
the the DLP.
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HAPPY GROUPS

Все [конечные циклические группы] похожи
друг на друга, каждая несчастливая группа
[структурирована] по своему

All [finite cyclic groups] are alike, but each un-
happy group is [structured] in its own way.

(with apologies to) Leo Tolstoy
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Happy groups

1. I spent way too much time on this slide. Particularly because I
thought that ‘г’ and ‘и’ were some sort of error from a bad font
mapping or encoding. It turns out that these are the correct
Cyrillic letter forms for lowercase italic ‘г’ and ‘и’.

2. I really should have this about abelian finite cyclic groups, but I
don’t want to bother Tim with more translation requests.

3. Misquoted from Ana Karenina, which is less well known than his
very Russian novel Special Military Operations and Peace.



ELLIPTIC CURVES

It is possible to define a group with the right structure using
elliptic curves. See the computation-examples document for
more information.

The operation is called “point addition” and so the notation is
different.
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NOTATION WARS

Operation ℤ×
𝑝 Elliptic Curve group

Op. name mod. multiplication point addition
𝑎𝑏 𝑃 + 𝑄

Repeated exponentiation scalar multiplication
𝑥𝑛 𝑛𝑃

From generator 𝐴 = 𝑔𝑎 𝑃 = 𝑝𝐺
Logarithm Find 𝑎 given 𝐴, 𝑔 Find 𝑝 given 𝑃 , 𝐺

log𝑔 𝐴 discrete_log(𝑃 , 𝐺)

Table 1: Terms and notation for integer and elliptic curve groups

28



NOTATION WARS

Operation ℤ×
𝑝 Elliptic Curve group

Op. name mod. multiplication point addition
𝑎𝑏 𝑃 + 𝑄

Repeated exponentiation scalar multiplication
𝑥𝑛 𝑛𝑃

From generator 𝐴 = 𝑔𝑎 𝑃 = 𝑝𝐺
Logarithm Find 𝑎 given 𝐴, 𝑔 Find 𝑝 given 𝑃 , 𝐺

log𝑔 𝐴 discrete_log(𝑃 , 𝐺)

Table 1: Terms and notation for integer and elliptic curve groups20
24
-0
8-
26

Hard problems for crypto
DLP in elliptic curve groups

Notation wars

1. ECs have a history in geometry, and so points are typically
referred to using capital letters like 𝑃 and 𝑄, while in integer
groups 𝑝 is often used for the prime modulous.

2. When talking abstractly about groups, 𝐺 is often used to refer to
a group, but with elliptic curves, it is often used to describe the
generator or base-point.

3. “Scalar” means ordinary number. 𝑛 is a point.



DLP ON ELLIPTIC CURVES

Given a suitably defined elliptic curve group C and a generator
point 𝐺 within the group and some integer 𝑑, a point 𝑃 is easy
to compute as in equation 3.

𝑃 = 𝑑𝐺 (within group C) (3)

Computing 𝑑 from 𝑃 is hard and is called finding the discrete
logarithm of 𝑃 .
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GDLP ASSYMMETRY

A carefully contrived elliptic curve group with approximately 20
bit security of

𝑦2 = 𝑥3 + 522510265620𝑥 + 189830553521 (mod 872078115079)
(4)

with generator 𝐺 = (842965367165, 470264993162) computing

𝑃 = 𝑝𝐺 (5)

with 𝑝 = 266038276613 took under 1 second, while computing 𝑝
from 𝑃 and 𝐺 took about 25 seconds.
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GDLP Assymmetry

The software that I happen to be using is not nearly as well optimized
for elliptic curve operations as it is for integer operations.
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