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ABOUT ASYMMETRY



ENCRYPTION IS EASY

I can easily encrypt text with a key, say
4f232f55df69d9f6788147686580e854
Encryption with known key

% echo -n "What key's used?" | \
openssl enc -aes-128-ecb -nopad -a \
-K 4f232f55df69d9f6788147686580e854 \
-out enc-demo.txt

This is ECB mode on a single, unpadded block. It will always
produce the same result in file enc-demo.txt
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DECRYPTION IS EASY (WITH THE KEY)

Decryption with the key

% openssl enc -d -aes-128-ecb -nopad -a \
-K 4f232f55df69d9f6788147686580e854 \
-in enc-demo.txt

What key's used?
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ENCRYPTION IS EASY

Encryption with ephemeral key

% echo -n "What key's used?" | \
openssl enc -aes-128-ecb -nopad -a \
-K $(openssl rand 16 -hex)

FbREw7G228g2ScV2aWDTKQ==

The key is quickly forgotten and never seen. The output, this
time, is FbREw7G228g2ScV2aWDTKQ==
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ABOUT ASYMMETRY

HARD TO COMPUTE. EASY TO VERIFY



CAN’T FIND THE KEY

Plaintext What key's used?
Ciphertext FbREw7G228g2ScV2aWDTKQ== (Base64

encoded)
Algorithm AES-128, ECB, no-padding

Key (Unfeasible to find; easy to verify)
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EASY VERIFICATION

If someone claims to have the key, anyone with the knowledge
of the plaintext, ciphertext, and algorithm can easily see if the
claim is true.
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NONDETERMINISTIC POLYNOMIAL (NP)



NP PROBLEMS

Definition (NP problems)
A problem is among the non-deterministic polynomial (NP)
problems if it is easy to verify whether a claimed solution is
correct.

Definition (P problems)
A problem is among the polynomial (P) problems if it is easy
to compute a solution.
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NP problems

The use of distinct typography for P and NP is to highlight that these
are mathematical objects representing sets of problems.



ASSUME THE HARDEST

Technically, every thing in P is also in NP. In normal
conversation, however, when people say that something is in
NP they usually mean “in NP and not in P.”

Implicature of Maximality
“Max has two dogs” is (pedantically) true even if Max has
three dogs. But in most contexts it carries the implicature
that Max has exactly two dogs.
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Assume the hardest

In a context of Dad jokes, conversational implicatures go out the win-
dow.



FAME AND FORTUNE

• There is no proof that there are problems which are in NP
but not in P.

• Fame and fortune awaits anyone who can remedy that
situation with a proof either way.

• We all assume that there are NP problems that are not P.
We have a very good ideas of what some of them are. A
proof that P = NP would be extremely surprising and
really bad for cryptography.
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Fame and fortune

The reasons for believing that P ≠ NP are not just wishful thinking.



HARD AND EASY



IN ONE (USELESS) SENTENCE

Definition (Hard)
A problem is hard if and only if there is no probabilistic
polynomial time algorithm which can solve it for all valid
input.

That definition is useless to those who don’t already know
what “hard” means, and it is pointless to repeat for those who
do.
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HARD AND EASY

SETTING BOUNDARIES



TIME AND LENGTH

• It takes more time (steps) to multiply two 10-digit
numbers than to multiply two 2-digit numbers.

• It takes more time to multiply two 100-digit numbers than
to multiply two 10-digit numbers.

• It takes more time to multiply two 5000-digit numbers
than to multiply two 100 digit numbers.
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Setting boundaries
Time and length

1. Should we count in digits or bits? It doesn’t matter here as
those just differ by a constant, log2(10). We tend to use bits for
other reasons.

2. Multiplication is sub-linear.



AN EXAMPLE COMPLEXITY

Suppose that the number of operations needed to perform
some computation on input size 𝑛 is something like this
polynomial

𝑓(𝑛) = 4.5𝑛3 − 100𝑛2 + 50000𝑛 + 10000000 (1)
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A SORT OF RUNIC RHYME
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Figure 1: Time as a function of size of input
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SETTING AN UPPER BOUND

An upper bound for 𝑓(𝑛) is

𝑔(𝑛) = 5𝑛3 (2)
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BEGINNING BOUNDS
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Figure 2: Time may exceed bound for small 𝑛
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IN THE LONG RUN
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Figure 3: After a point, the bound is above
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BIG O



REPEATING THE EXAMPLE

So that I don’t have to jump back and forth between slides

Example (𝑓(𝑛) and 𝑔(𝑛))

𝑓(𝑛) = 4.5𝑛3 − 100𝑛2 + 50000𝑛 + 10000000 (1)
𝑔(𝑛) = 5𝑛3 (2)
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THERE IS SOME NUMBER, 𝑐

When we say that 𝑓(𝑛) is in O(𝑛3) we are saying that there is
some number 𝑐 such that 𝑐𝑛3 provides an upper bound to 𝑓(𝑛)
in the way described in above examples.

In our example, 𝑐 can be any number greater 4.5.
We don’t care about 𝑐. We only care that it exists.
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THERE IS SOME NUMBER, 𝑛̂

When we say that 𝑓(𝑛) is in O(𝑛3) we are also saying that
there is some number 𝑛̂ such that 𝑓(𝑛) ≤ 𝑐𝑛3 for all values of
𝑛 that are greater than 𝑛̂. In our example, 𝑛̂ is around 316.23.
In our example, 𝑓(𝑛) ≤ 5𝑛3 for all 𝑛 > 100

√
10.

We don’t care about 𝑛̂. We only care that it exists.
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LEARNING NOT TO CARE

Big O notation and many useful results in computational
complexity requires us to not care about 𝑐 and 𝑛̂ beyond the
fact that they must exist. It is hard not to care, especially
because there are times when we have to, but

Theorem
Life goes easier for you if you learn not to care.

(Please do not quote me out of context.)
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Learning not to care

1. Rob Pike [Pik87] (when talking about unhelpful optimzations)
once said, “fancy algorithms are slow when 𝑛 is small, and 𝑛 is
usually small.” In cryptography we design systems with small
enough 𝑐 and 𝑛̂ so that we do get to a place where we can used
large enough 𝑛 in practice to get the asymmetry we want.



WHEN ‘=’ ≠ “EQUALS”

𝑓(𝑛) is in O(𝑛3).
This is often written as “𝑓(𝑛) = O(𝑛3)”, but the equal sign
should be read as “is in”.

𝑓(𝑛) = O(𝑛3)
𝑔(𝑛) = O(𝑛3)

But 𝑓(𝑛) ≠ 𝑔(𝑛)
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ANYTHING ABOVE

Any function in O(𝑛3) is also in O(𝑛4), which in turn is in
O(𝑛345), which in turn is in O(𝑒log 𝑛), which in turn is in
O(𝑒

√𝑛), which in turn is in O(𝑒𝑛), which in turn is in O(𝑒𝑛2),
which in turn is in O(𝑛!), and many more.
Implicature (again)
ℎ(𝑛) is in O(𝑛5) is (pedantically) true even if ℎ(𝑛) is in O(𝑛2).
But in many contexts it carries the implicature that there is
no reason to believe that ℎ(𝑛) is in O(𝑛4).
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BIG O

COMPLEXITY CLASSES



POLYNOMIAL TIME (AND SMALLER)

A function is polynomial time if there exists a number 𝑘 – the
degree of a bounding polynomial – such that the function is in
O(𝑛𝑘). 𝑘 must not depend on 𝑛.

Order Degree Buzzword

O(𝑛84) 𝑘 = 84
O(𝑛2) 𝑘 = 2 (quadratic time)
O(𝑛) 𝑘 = 1 (linear time)
O(√𝑛) 𝑘 = 0.5
O(log 𝑛) unreal (logarithmic time)
O(1) 𝑘 = 0 (constant time)

Table 1: Some polynomial times, in decreasing size
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Complexity classes
Polynomial time (and smaller)

1. To the extent we can say something about 𝑘 in the logarithic
case, we can say that 𝑘 > 0 and 𝑘 is smaller than any positive
real number.



SUB-EXPONENTIAL

Everything in polynomial time is also sub-exponential, but
here we give examples often things that are sub-exponential
and not polynomial.

• O(𝑒log 𝑛)
• O(𝑒

√𝑛)

These are of the form of O(𝑒𝑔(𝑛)) where 𝑔(𝑛) < O(1). That is
the exponent is a function of 𝑛 that is sub-linear.
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EXPONENTIAL

Everything in sub-exponential is also in exponential time, but
here we give examples often things that are exponential and
not sub-exponential.

• O(𝑒𝑛)
• O(𝑒𝑛2)

These are of the form of O(𝑒𝑔(𝑛)) where the order of 𝑔(𝑛) is
greater than or equal to O(1). That is, the exponent is a
function of 𝑛 that is linear or greater.
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PROBLEMS AND ALGORITHMS

We’ve talked about the complexity (time) of particular
algorithms, but we are interested in problems.

Definition (Problem complexity)
A problem has a particular complexity if there is at least one
algorithm of that particular complexity which can solve the
problem.

Example
The problem of listing all possible bit sequences of length 𝑛
is O(2𝑛). There is no sub-exponential algorithm for doing so.
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A NOT SO USELESS DEFINITION

Definition (Hard problem)
A problem is hard if and only if there is no probabilistic
polynomial time algorithm which can solve it for all valid
inputs.
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Complexity classes
A not so useless definition

1. Cryptography has a slightly stronger requirement. We need a
problem to be hard for most average inputs. A problem that is
hard only for a small class of inputs is of no use.



NP (AGAIN)

NP
A problem is in NP (non-deterministic polynomial) if and
only if there is a probabilistic polynomial time algorithm
which can verify any candidate solution.
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NP-COMPLETE

Two things to know about the NP-complete category of
problems

1. A polynomial time algorithm that solves any NP-complete
problem can be transformed into a polynomial time
solution for any other NP-complete problem.

2. If there is a polynomial time algorithm to solve any
NP-complete problem then there is a polynomial time
algorithm for any NP problem.

Those two points are subtly different.
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NP-complete
NP-complete

1. If someone finds a polynomial time algorithm to solve, say,
3-SAT (an NP-complete problem) then all problems in NP are in
P, including factoring and the DLP. But a polyinomial time
solution for 3-SAT will not necessarily give as a poly solution to
factoring; it will only tell us that one exists. It will, however, give
us a poly time algorithm to every other NP-complete problem
because we can translate (in polynomial time) any NP-complete
problem to 3-SAT.



NP-COMPLETE: ANOTHER TAKE

Complete facts

1. All NP-complete problems are really just variants of a
single problem.

2. That problem is at least as hard as anything in NP.
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ARE FACTORING AND DLP NP-COMPLETE?

Factoring and the DLP do not smell like NP-complete
problems, but there is no proof either way.
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GENERALIZING THE DLP

The cryptographically useful properties of the discrete
logarithm problem requires a finite cyclic group (with a few
other conditions on the group).

The group does not need to have integer elements and
modular multiplication. It can be constructed from other
things if it has the right structure. The term “generalized DLP”
(GDLP) is sometimes used to talk about this generalization of
the the DLP.
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HAPPY GROUPS

Все [конечные циклические группы] похожи
друг на друга, каждая несчастливая группа
[структурирована] по своему

All [finite cyclic groups] are alike, but each un-
happy group is [structured] in its own way.

(with apologies to) Leo Tolstoy
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NP-complete
Happy groups

1. I spent way too much time on this slide. Particularly because I
thought that ‘г’ and ‘и’ were some sort of error from a bad font
mapping or encoding. It turns out that these are the correct
Cyrillic letter forms for lowercase italic ‘г’ and ‘и’.

2. I really should have this about abelian finite cyclic groups, but I
don’t want to bother Tim with more translation requests.



ELLIPTIC CURVES

It is possible to define a group with the right structure using
elliptic curves. See the computation-examples document for
more information.

The operation is called “point addition” and so the notation is
different.
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NOTATION WARS

Operation ℤ×
𝑝 Elliptic Curve group

Op. name mod. multiplication point addition
𝑎𝑏 𝑃 + 𝑄

Repeated exponentiation scalar multiplication
𝑥𝑛 𝑛𝑃

From generator 𝐴 = 𝑔𝑎 𝑃 = 𝑝𝐺
Logarithm Find 𝑎 given 𝐴, 𝑔 Find 𝑝 given 𝑃 , 𝐺

log𝑔 𝐴 discrete_log(𝑃 , 𝐺)

Table 2: Terms and notation for integer and elliptic curve groups
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NP-complete
Notation wars

1. ECs have a history in geometry, and so points are typically
referred to using capital letters like 𝑃 and 𝑄, while in integer
groups 𝑝 is often used for the prime modulous.

2. When talking abstractly about groups, 𝐺 is often used to refer to
a group, but with elliptic curves, it is often used to describe the
generator or base-point.

3. “Scalar” means ordinary number. 𝑛 is a point.



DLP ON ELLIPTIC CURVES

Given a suitably defined elliptic curve group C and a generator
point 𝐺 within the group and some integer 𝑑, a point 𝑃 is easy
to compute as in equation 3.

𝑃 = 𝑑𝐺 (within group C) (3)

Computing 𝑑 from 𝑃 is hard and is called finding the discrete
logarithm of 𝑃 .

35



GDLP ASSYMMETRY

A carefully contrived elliptic curve group with approximately 20
bit security of

𝑦2 = 𝑥3 + 522510265620𝑥 + 189830553521 (mod 872078115079)
(4)

with generator 𝐺 = (842965367165, 470264993162) computing

𝑃 = 𝑝𝐺 (5)

with 𝑝 = 266038276613 took under 1 second, while computing 𝑝
from 𝑃 and 𝐺 took about 25 seconds.
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NP-complete
GDLP Assymmetry

The software that I happen to be using is not nearly as well optimized
for elliptic curve operations as it is for integer operations.
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EXISTENCE OF A SOLUTION



ABSENSE OF A SOLUTION

To verify that no solution exists, you may need to go
through all possible inputs. [Aum17, ch 9, §NP-time]

I carefully contrived my initial encryption example to encrypt a
single block in ECB mode. Because that is a pseudo-random
permutation (PRP), a solution must exist.
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A PRP IMPLIES A KEY

AES is a PRP on a 16-byte block. That means that there must
exist a key that will encrypt a specific block to some other
block.

Ptext Can you find key
Ctext that comes to me
Alg AES-128, ECB, no-padding
Key (The key will be hard to find, but easy to verify)
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FIELDS AND GROUPS



SRP IS WEIRD

The PAKE (Password-based Authenticated Key Exchange)
scheme we use for authentication in 1Password is the Secure
Remote Password (SRP) protocol.

• Not all groups are fields
• All fields are groups
• Elliptic curves do not give us a fields
• ℤ×

𝑝 is a field.
• SRP requires its operations to be over a field.
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NOTES ON THE READING

MISCELLANY



MATH RENDERING

The ePub (when viewed with Apple Books app) doesn’t always
display the math correctly, while the print book does.

40



SPACE, TIME, AND SPACETIME

To avoid yet another complexity, I pretended that running time
(number of operations) as the only thing to count.

But the analogous thing should be done for memory
requirements. Indeed, some problems are specifically
designed to be memory hard. (Modern slow hashes are the
prime example.)
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DOWNGRADE ATTACKS

Not only did servers support a weak algorithm, but at-
tackers could force a benign client to use that algo-
rithm by injecting malicious traffic within the client’s
session [Aum17, ch 9, §small]

Offering backwards compatibility with insecure systems
tempting, but dangerous.
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THERE ARE ENOUGH BIG PRIMES

Theorem (Prime number theorem)
The number of prime numbers less than 𝑥 approaches 𝑥

ln 𝑥 as
𝑥 gets larger.

Example (1024-bit primes)
There are about 21013 1024-bit primes.

( 21024

ln 21024 ) − ( 21023

ln 21023 )
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Miscellany
There are enough big primes

Hint for those doing that at home: ln 𝑥𝑚 = 𝑚 ln 𝑥. So the only loga-
rithm you need to take is ln 2.



3072 BITS MAY BE ENOUGH

Don’t forget about 3072-bit keys. The tools we use support it,
and it is a good combination security and manageability.
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RESOURCES
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