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NUMBERS



WHOLESOMENESS

Definition 1 (Number)
For the purposes here, so called natural numbers ℕ
(including 0). These are the familiar numbers {0, 1, 2, 3, …}
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How to do things with numbers
Numbers

Wholesomeness

1. Gotlieb Frage, using Gregor Cantor’s set theory, was the first to
define numbers in terms of something more basic. But before
you ask, I need to tell you that the definition does absolutely
nothing to communicate a sense of what natural number
means.

2. Cantor was effectively blacklisted from positions and publishing
because Leopold Kronecker really hated that Cantor not only
talked about infinities, but because Cantor developed a solid
theory of them. Cantor, always a bit unstable, eventually went
mad and killed himself.

3. For some people the set ℕ includes 0, but for other people it
doesn’t. So people tend to write things like “ℕ (including 0)” or
“ℕ (excluding 0)”.



NATURALLY

Die ganzen Zahlen hat der liebe Gott gemacht,
alles andere ist Menschenwerk

The whole numbers were created by God, every-
thing else is the work of men.

Leopold Kronecker (1886)
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How to do things with numbers
Numbers

Naturally

1. Good quote, but Kronecker was seriously on the wrong side of
mathematics.

2. The terms “natural numbers” and “integers” hadn’t been
invented at the time.

3. Kronecker would be greatly pained to see how ℕ is defined
today. I take pleasure in that.

4. Frege was a nasty piece of work, but he enormously advanced
mathematical foundations and logic, unlike Kronecker, who held
it back.

5. Frege, who thought that all Jews should be exterminated from
Europe, built all his work, including his definition of number, the
work of the very Jewish Cantor.



REPRESENTING NUMBERS



WHAT YOU ALREADY KNOW

Example 2

2705 = 2 ⋅ 1000 + 7 ⋅ 100 + 0 ⋅ 10 + 5 ⋅ 1
= (5 ⋅ 1) + (0 ⋅ 10) + (7 ⋅ 100) + (2 ⋅ 1000) (left-to-right)

= (5 ⋅ 100) + (0 ⋅ 101) + (7 ⋅ 102) + (2 ⋅ 103)
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How to do things with numbers
Representing numbers

What you already know

1. Through an accident of history our way of representing numbers
isn’t well suited for reading left to right.



A NUMERAL SYSTEM BY ANY OTHER NAME

Definition 3 (IAN System)
What is sometimes called the “Arabic-Hindu numeral system”
or the “Arabic numerals” I am going to call the “Indian-Arabic
numeral system” (IAN system).
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How to do things with numbers
Representing numbers

A numeral system by any other name

1. 9th century CE scholars, writing in Arabic called these “hindi”
numerals, but ”hindi” was the Arabic word for “Indian”.



SAME THING, BASE 8

Example 4

52218 = 5 ⋅ 256 + 2 ⋅ 64 + 2 ⋅ 8 + 1 ⋅ 1
= (1 ⋅ 1) + (2 ⋅ 8) + (2 ⋅ 64) + (5 ⋅ 256) (left-to-right)

= (1 ⋅ 80) + (2 ⋅ 81) + (2 ⋅ 82) + (5 ⋅ 83)
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ROMAN

Example 5

MMDCCV = 1000 + 1000 + 500 + 100 + 100 + 5
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WHAT MAKES THE IAN SYSTEM BETTER?

• Works well for fairly large numbers.

• System can be adapted to work with fractional amounts
• It has zero.
• It’s easier to compare which numbers are bigger
• It makes arithmetic easy
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How to do things with numbers
Representing numbers

What makes the IAN system better?

1. It was certainly possible to talk about large numbers as
Archimedes did in The Sand Reckoner in which he estimated
how many grains of sand it would take to fill the universe. In
estimating the size of the universe, he took the view that the
sun was at the center.

2. We do this by moving to negative exponents of the base.
4.83 = 4 ⋅ 100 + 8 ⋅ 10−1 + 3 ⋅ 10−2

3. 0 is necessary for the place-based system, but this didn’t really
invent zero, despite what you may have been told.
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ALGORITHMS



A DIVISION

Annoying task
Divide MMDCCV by DXLI. Give your answer in Roman
numerals. Do not use a computer.

A sensible approach

1. Convert the Roman numerals to IAN system.
2. Do paper and pencil long division to get an answer in IAN
system.

3. Convert that solution back to Roman numerals.
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How to do things with numbers
Algorithms

A division

1. I am not actually asking anyone to do this. But we will come
back to it.



ENABLING ALGORITHMS

• 9th century CE, Muhammad ibn Mūsā al-Khwārizmī wrote a
textbook, Al-jabr.

• The words “algorithm” and “algebra” come from the
author’s name and book title.

• He also wrote Computation the Indian Way in 825 CE.
• Leonardo of Pisa (aka Fibonacci) popularized this way of
doing arithmetic in Europe with his 1202 book Liber Abaci.
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How to do things with numbers
Algorithms

Enabling algorithms

1. al-Khwārizmī, as Chief Astronomer in Bagdad, wrote in Arabic,
but his native language may have been Farsi.

2. The original Arabic text on Indian computation is lost, but it was
frequently cited and was translated to Latin.



ALGORITHMS & REPRESENTATIONS

• The algorithms for arithmetic are deeply tied to the ways
the numbers are represented

• Arithmetic becomes symbol manipulation as a
consequence of the place based system.

• The representation and the algorithms are a package deal.
• I am repeating this in multiple ways because this really is
a crucial point.
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LEARNING TO MULTIPLY

• Memorize single digit multiplication table.
• Memorize (through practice) the algorithm for multi-digit
multiplication.

• Congratulations! You can now add and multiply numbers
of any size.

• This can be taught to children. One no longer needs a
university education to be able to multiply.
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How to do things with numbers
Algorithms

Learning to multiply

1. There are multiple closely related varients of these algorithms.
They are all based on the place-based system in the same way,
but are notationally different. Watching my Hungarian educated
wife do long division confuses me.



ALGORITHMS

IN COMPUTERS



IT’S NOT JUST BASE-2

• A byte is just an ordinary base-2 place-based number.
• Bytes can be seen as the base for a base-256 system.
• The order of bytes in representing a number depends on
whether the chip architecture is big-endian or
little-endian.

• Negative integers are represented in two’s-complement
form.
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THE MAZE ISN’T MEANT FOR YOU

• CPUs (and other hardware) are better at manipulating
bytes than bits.

• Endianness is tied to fine details of how memory is
accessed within the CPU.

• The highly specialized hardwired algorithms that chips use
for arithmetic work directly on two’s complement
representations, without having to do something special
for negative numbers.

• These representations are not meant for paper and pencil
arithmetic. They are tuned to the algorithms used by
computers internally.
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Different ways of representing numbers enable
and are tied to different algorithms for doing

things with the numbers.
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HOMOMORPHISMS



A DIVISION

Annoying task
Divide MMDCCV by DXLI. Give your answer in Roman
numerals. Do not use a computer.

A sensible approach

1. Convert the Roman numerals to IAN system.
2. Do paper and pencil long division to get an answer in IAN
system.

3. Convert that solution back to Roman numerals.
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HOMOMORPHISM

Definition 6 (Homomorphism)
Two domains, both alike in dignity, in …

(Never mind. A definition would not be useful at this point.)

15



THERE AND BACK AGAIN

1. Start a problem that is hard/annoying to solve in its own
little world.

2. Translate it to a problem in a different little world.
3. Solve the problem in that second world.
4. Translate back to the original world.
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ALL ROADS LEAD TO (AND FROM) ROME

1. Start with multiplication problem in the world of Roman
numerals.

2. Translate it to a problem in the IAN system.
3. Solve the problem in the IAN system.
4. Translate back to Roman numerals.

A homomorphism is a relationship between worlds and
problems that allows that to work.
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How to do things with numbers
Homomorphisms

All roads lead to (and from) Rome

1. The term homomorphism is not really used for such simple
examples. I am stretching to make use of an accessible example.



CHINESE REMAINDER THEOREM



PICKING UP THE PIECES

How many remains?
You are a serial killer, and one of your victims is from China.
You’ve chopped up this victim’s remains into many pieces
(but no more than 900 pieces), which you store in in a bin.
One day, the bin overturns and all of the pieces spill out.

• First you gather up the pieces in groups of 25 (because you
are that kind of lunatic) and find that 14 remains remain,

• then you gather them up in groups of 9 and find that one
remain remains,

• finally, you gather them up in groups of 4 and find that
three remains remain.

How many pieces are there in total?
18
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How to do things with numbers
Chinese Remainder Theorem

Picking up the pieces

1. Someone pointed out to me that the answer, 739, is interesting
in its own right. The two notable births for 739 CE listed on
Wikipedia are both Chinese. The number is the 131st prime.

2. 131 is a Sophie Germain prime. And it is the CRT that requires
that we use safe primes for our finite fields.

3. Those are most likely coincidences, and 739 was chosen
because it is annoying to compute without the CRT.



In addition to being a theorem and an al-
gorithm, we would suggest to the reader
that the Chinese remainder theorem is
also a state of mind. [HPS08, p 86]
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CRT REPRESENTATION

Definition 7 (CRT representation)
A Chinese Remainder Theorem representation of a number
as a list of moduli and a list (of equal length) of remainders.
In our murderous example, the moduli are (25, 9, 4) and the
corresponding remainders are (14, 1, 3)

.
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How to do things with numbers
Chinese Remainder Theorem

CRT representation

1. Alternatively we could do this as a set of ordered pairs
{(25, 14), (9, 1), (4, 3)}



CHINESE REMAINDER THEOREM

Theorem 8 (Chinese Remainder Theorem)
Given a CRT representation of moduli (𝑀1, 𝑀2, … , 𝑀𝑛) and
their corresponding remainders (𝑅1, 𝑅2, … , 𝑅𝑛) if the moduli
are all mutually coprime, then there is a unique integer less
than the product of all of the moduli that satisfies this
representation.

Example 9
Given moduli (25, 9, 4) and remainders (14, 1, 3) we see that
the moduli are all coprime with each other. This means that
there is a single number less than 25 ⋅ 9 ⋅ 4 = 900 which could
have the given remainders. That number is 739.
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ADDITION

Let’s look at 54 plus 739 in a mod (25, 9, 4) world.

739 mod (25, 9, 4) = (14, 1, 3)

739 + 54 mod (25, 9, 4) = (14 + 54, 1 + 54, 3 + 54)
= (68, 55, 57)
= (18, 1, 1)
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MULTIPLICATION

Let’s look at 123 times 739 in a mod (25, 9, 4) world.

739 mod (25, 9, 4) = (14, 1, 3)

739 ⋅ 123 mod (25, 9, 4) = (14 ⋅ 123, 1 ⋅ 123, 3 ⋅ 123)
= (1722, 123, 369)
= (22, 6, 1)

22



CRT ALGORITHM

CRT algorithm
from sympy.ntheory.modular import crt
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How to do things with numbers
Chinese Remainder Theorem

CRT algorithm

1. A proof of the CRT conveniently gives an algorithm for
computing the unique integer.

2. There are some good videos out there explaining it if you are
interested.



CRT ALGORITHM EXAMPLE

Example 10 (Returning to mod 900)

>>> from sympy.ntheory.modular import crt
>>> mods = [25, 9, 4]
>>> crt(mods, [14, 1, 3])[0]
739 # This many pieces, you sicko!
>>> crt(mods, [68, 55, 57])[0] # Plus 54
793
>>> crt(mods, [1722, 123, 369])[0] # Times 123
897

24



CRT AND THE DLP

Someone trying to solve the discrete logarithm problem in a
mod 𝑝 world, can use the CRT to break the problem down into
solving something in a CRT world where the moduli are the
factors of 𝑝 − 1.
This is why we use safe primes, 𝑝 = 2𝑞 + 1 where 𝑞 is prime, so
the factors of 𝑝 − 1 are 2 and 𝑞.
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PRE-CRT IN RSA

Using the CRT in RSA decryption allows us to do computations
on numbers around the size of the primes 𝑝 and 𝑞 instead of
with numbers the size of 𝑝𝑞.

type PrecomputedValues struct {
Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
Qinv *big.Int // Q^-1 mod P
// ... stuff I am skipping

}
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A FULLER LISTING

type PrecomputedValues struct {
Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
Qinv *big.Int // Q^-1 mod P

// CRTValues is used for the 3rd and subsequent
// primes. Due to a historical accident, the CRT
// for the first two primes is handled
// differently in PKCS #1 and interoperability
// is sufficiently important that we mirror this.
CRTValues []CRTValue

}
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How to do things with numbers
Chinese Remainder Theorem

A fuller listing

1. I couldn’t put the listing on a notes page due to, well, TEXnical
difficulties.

2. Yes. The standards really do define RSA for the modulus being
the product of two or more primes.



CRT IN RSA

1. Start in the world of 𝑁 = 𝑝𝑞 trying to solve 𝑚 = 𝑐𝑑 mod 𝑁
2. Do exponentiations with 𝑑𝑝 and 𝑑𝑞, in a mod (𝑝, 𝑞) world.
3. Do some simple arithmetic with the remainders.
4. Use 𝑞inv and the CRT algorithm to get the final decrypted
message 𝑚 (mod 𝑁).
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SOME THINGS ARE HARDER IN A CRT WORLD
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How to do things with numbers
Chinese Remainder Theorem

Some things are harder in a CRT world

1. I can go with ordering if I can’t come up with a better example



HOMOMORPHIC ENCRYPTION



EASY SO FAR

Our examples so far of Roman to IAN, integer to CRT, and IAN
to internal computer representations were to make certain
computations easier.

Things will get harder from here on out.
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TWO WORLDS

• There are two worlds, our world,W and a homologous
world H.

• The function 𝑓(𝑥) translates stuff fromW to things in H.
• The function 𝑓 ′(𝑥′) translates stuff back from H toW .
• 𝑥 = 𝑓 ′(𝑓(𝑥))
• In our world,W , there are two operations: ‘+’ and ‘×’.
• In H there are two homologous operations ⊕ and ⊗.
• 𝑥 + 𝑦 = 𝑓 ′(𝑓(𝑥) ⊕ 𝑓(𝑦))
• 𝑥 × 𝑦 = 𝑓 ′(𝑓(𝑥) ⊗ 𝑓(𝑦))
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How to do things with numbers
Homomorphic encryption

Two worlds

1. We have an algorithm for translating Roman numerals to IAN
2. If we translate “VII” to ”7” then translating back from “7” better
give us ”VII”.

3. Addition and multiplication exist in the Roman world. Even if
ungainly.

4. Different algorithms, but they exist in IAN
5. Translating two numbers from Roman to IAN, performing the
operation homologous to addition in IAN, and translating the
results back gives you the same result you’d get if you
performed addition entirely within the world of Roman
numerals.

6. You now pretty much know what a homomorphism is.



MAKING A LITTLE BIT HARDER

Now suppose:

• Computing functions 𝑓(⋅) and 𝑓 ′(⋅) is easy (polynomial).
• TheW operations + and × are easy (polynomial).
• The H operation ⊕ is easy.
• the H operation ⊗ is hard (not polynomial).
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NOT REALLY HARD

1. You are in H, and you would like to compute 𝑥′ ⊗ 𝑦′.
2. Compute 𝑥 = 𝑓 ′(𝑥′) and 𝑦 = 𝑓 ′(𝑦′);
3. Compute 𝑧 = 𝑥 × 𝑦;
4. Compute 𝑧′ = 𝑓(𝑧).
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THE KEY TO TRANSLATION

Now suppose that our translations functions require a key

1. We have a task 𝑡 inW .
2. We pick a random key, 𝑘.
3. We use the keyed function 𝑓𝑘(𝑡) to create 𝑡′.
4. We give the 𝑡′ to Trinity (third party) to work on. We do not
give Trinity the key.

5. We know that Trinity cannot perform operation ⊗ on it, we
know that he can’t translate it back toW without the key,
and we know that he can perform ⊕ on it.

6. Trinity performs the task and returns his result, 𝑟′.
7. We have the key 𝑘 and so we can compute 𝑟 = 𝑓 ′

𝑘(𝑟′)

34



HOMOMORPHIC ENCRYPTION

MAKING THIS MAGIC USEFUL



ADDRESS BOOK COMPARISON PROBLEM

Alice and Bob would like to know who they know in common
without revealing anyone’s telephone number to the other.
They want to solve the set intersection of the telephone
numbers in their address book. The are looking to solve
𝑚𝐴𝐵 = 𝑚𝐴 ∩ 𝑚𝐵.
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THREE KINDS OF SOLUTIONS

1. Compare hashes of phone numbers,
2. Use a trusted third party, or
3. Use the magic of homomorphic encryption.
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How to do things with numbers
Homomorphic encryption

Making this magic useful
Three kinds of solutions

1. Hashes really don’t work when the things being hashed are low
entropy

2. They don’t want to trust a third party with all of those telephone
numbers if they don’t have to.

3. We are talking about homomorphic encryptionm, so Alice and
Bob will pick this one.



COMPUTING 𝑚𝐴 ∩ 𝑚𝐵

1. Alice and Bob would to compute 𝑚𝐴𝐵 = 𝑚𝐴 ∩ 𝑚𝐵

2. Alice and Bob negotiate a key, 𝑘
3. Alice transforms her address book: 𝑚′

𝐴 = 𝑓𝑘(𝑚𝐴)
4. Bob transforms his address book 𝑚′

𝐵 = 𝑓𝑘(𝑚𝐵)
5. They give 𝑚′

𝐴 and 𝑚′
𝐵 to Trinity.

6. Trinity computes 𝑚′
𝐴𝐵 = 𝑚′

𝐴 ∩′ 𝑚′
𝐵 using the homologous

set union operation.
7. Both Bob and Alice can get the intersection using their
key: 𝑚𝐴𝐵 = 𝑓 ′

𝑘(𝑚′
𝐴𝐵)
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Homomorphic encryption

Making this magic useful
Computing 𝑚𝐴 ∩ 𝑚𝐵

1. Trinity has to be trusted to do her job properly, but she isn’t
trusted with any secrets.



MULTI-PARTY COMPUTATION

We don’t need Trinity. It is possible for Alice and Bob to
exchange data directly with each other using the same kind of
mathematical magic, and achieve the same result. That is
often called multi-party Computation (MPC). It tends to require
more back and forth communication between the parties.
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How to do things with numbers
Homomorphic encryption

Making this magic useful
Multi-party computation

1. See [Chi19] for a nice little article on some of the differences
between HE and MPC.

https://www.esat.kuleuven.be/cosic/blog/the-three-musketeers-of-secure-computation-mpc-fhe-and-fe/


NEGOTIATING A MEETING TIME

A group of people would like to find a time available for them
all to meet, but do not wish to reveal their schedules to each
other or to a third party.
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1. Source code for the Kiss., Schick., and Schneider. [KSS19]
web-app at
https://github.com/encryptogroup/scheduling

2. Despite her name, Ágnes Kiss does not speak a word of
Hungarian and is surprised/annoyed when Americans at
security conferences assume that she does. Note that I was the
second American to start speaking to her during that poster
session.

https://github.com/encryptogroup/scheduling


THE MILLIONAIRES’ PROBLEM

Two millionaires wish to know who is richer; however,
they do not want to find out inadvertently any addi-
tional information about each other’s wealth. How can
they carry out such a conversation? [Yao82]
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1. That problem was stated in a 1982 paper. Today, of course, it
would be billionnaires, whom we might call JB and EM.



VOTING

• Fully private voting, where the tallier never sees how any
individual voted.

• Each voter can get a proof that their vote was counted.
• No voter can prove to a third party how they voted.

Microsoft Research [Mic19] has podcast (and transcript), with
an introduction.
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Answer: Our elections are already easily secure enough against those
threats, and so we need to focus on public confidence and availability
to eligible voters.

1. Why is the “can’t prove how you voted to a third party” criteron
important?

2. Despite the tech for this being known and available, why would
this be a terrible system in the US?



SEARCH ENCRYPTED DATA
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APPLE’S LOCATION STUFF
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HOMOMORPHIC ENCRYPTION

PRACTICALITIES



“EFFICIENT” DOESN’T ALWAYS MEAN EFFICIENT

• Just because an algorithm runs in polynomial time doesn’t
mean that it will run quickly enough for our needs.

• Just because an algorithm runs in polynomial space,
doesn’t mean that it doesn’t require an enormous amount
of space.
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40 YEARS OLD

• Any protocol that makes use of a trusted third party can
be done in polynomial time without it.

• Practical protocols were out of reach when that theorem
was proved.
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1. When RSA was first invented in GCHQ, it wasn’t pursued because
it was too computationally intensive for the computers at the
time.



NOT FULLY HOMOMORPHIC

• In our examples, there are some functions which can be
computed in the encrypted world and some that can’t.

• In practice, schemes are designed around the specific
problem and data sizes.

• With fully homomorphic encryption (FHE) everything can
be computed except that IND-CPA is maintained.

• An FHE scheme that is practical across a broad range of
problems and data sizes would make life a lot easier.
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HE V MPC

• Homomorphic encryption (HE) is about fairly general
mathematical operations like addition and multiplication.

• Multi-party computation (MPC) is about some very specific
computations.

• Today, I am lumping these together under HE, but the
technologies to implement them are often very different.
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DHKE IS MPC

A zero-knowledge key exchange is an example multi-party
computation.

• No secrets are communicated during the key exchange;
• Both parties compute a common value (the key);
• Each party needs the public information from the other to
compute the value.
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1. People typically don’t talk about SRP or DHKE as MPC, but
people don’t typically talk about conversion from Roman to IAN
numeral systems as a Homomorphism, either.



IT’S GOTTEN BETTER

• Algorithms have improved since 1982.
• Computing devices have become more powerful since
1982.
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RESOURCES

• These slides an their sources.
• Scheduling web-app source code for Kiss., Schick., and
Schneider. [KSS19].

https://github.com/jpgoldberg/sec-training//public/s/numbers.pdf
https://github.com/jpgoldberg/sec-training//-/tree/main/2022-04-08/
https://github.com/encryptogroup/scheduling
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