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NO MATH TODAY

Physics is all Linear Algebra and Differential Equations.
T. Goldberg (2022)

I suck at Linear Algebra and Differential Equations.
J. Goldberg (2022)
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COMPLEXITY CLASSES (AGAIN)



COMPLEXITY IN TERMS OF MACHINES

• A problem is in P if it can be solved in polynomial time on
a deterministic Turing machine (DTM).

• A problem is in NP if it can be solved in polynomial time
on a non-deterministic Turing machine (NTM).

• A problem is in BQP if it can be probabilistically solved in
polynomial time on a quantum Turing machine. (QTM)
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Quantum and Post-Quantum Cryptography
Complexity classes (again)

Complexity in terms of machines

1. “Non-derministic“ here doesn’t mean probabilistic. (There is
also something called a probabilistic Turing machine (PTM)). It
means that the machine is capable of making correct guesses
of a certain sort.

2. An algorithm running on a BQP needs to give the correct answer
most of the time. But it does not need to give the correct
answer all of the time.

3. I chose earlier to teach about major complexity classes in terms
other than machines, but now I have to. And so here we are.



ABSTRACTING MACHINE DETAILS

Consider the following variants of physical DTM.

• The read/write tape has a start point and is arbitrarily
long in just one direction.

• The read/write tape is arbitrarily long in both directions.
• There are two tapes.
• Instead of a tape, there is a two dimensional grid.

What is in O(𝑛3) in one variant may be in O(𝑛) in another
variant.
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POLY IS STABLE

Although the complexity can vary depending on the details of
the DTM, if some problem is in P on any DTM, there is a
polynomial time algorithm for it on all DTMs.
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Poly is stable

1. This is why we draw a big line between polynomial and
non-polynomial, while we don’t draw a big line between linear,
O(𝑛) and cubic, O(𝑛3).

2. I didn’t lie when I said “no math”. I meant that I wouldn’t be
introducing math we haven’t already done.



QUANTUM COMPUTERS



All computers are quantum, but some are more
quantum than others.

J. Goldberg () 4



All computers are quantum, but some are more
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Quantum Computers

1. Creating and designing transistors relies deeply on quantum
physics. And chips are lots of transistors wired together in a
very small space.

2. But tranistors do not exhibit quantum properties. They are
good for storing bits, not qubits.



“Quantum computers promise more computing power because
with only 𝑛 qubits, the can process 2𝑛 numbers.” [Aum17, p. 255]
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BIT VERSUS QUBIT

• 𝑛 bits can store one of 2𝑛 values.
• 𝑛 qubits can do stuff with up to 2𝑛 values.
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THIS QUOTE IS SIGNIFCANT

Unitary matrices (and quantum gates by definition) are
invertible, meaning that given the result of an opera-
tion, you can compute back to the original qubit by ap-
plying the inverse matrix. [Aum17, p. 257]
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This quote is signifcant

1. Just because that quote is signifcant, that doesn’t mean it is
easy to understand.

2. Next slide please!



IT’S DETERMINISTIC

Fully deterministic
Quantum mechanics is fully deterministic.
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It’s deterministic

1. We will get to quantum non-determinism, but that happens
later.



INTERFERENCE

“When youmake ameasurement, there’s a rule for con-
verting these amplitudes into ordinary probabilities.
But when you’re not looking, the amplitudes … well,
sometimes they do something very special and private
with each other. Something very … intimate.” [AW16]
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SIMON’S PROBLEM



THE PROBLEM

Definition 1 (Simon’s Problem)
Given a function 𝑓(⋅) whose input is a string of 𝑛 bits and
whose output is a string of 𝑛 bits, there may be a string of 𝑛
bits, 𝑚, such that

• If 𝑓(𝑥) = 𝑓(𝑦) then either 𝑥 = 𝑦 or 𝑥 ⊕ 𝑦 = 𝑚;
• And, if 𝑥 ⊕ 𝑦 = 𝑚 then 𝑓(𝑥) = 𝑓(𝑦).

Answer whether such an 𝑚 exists and what it is if it does
exist.
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The problem

1. That could be written much more concisely if I’d taught you all
more notation.

2. But notation aside, getting the intuition for what the problem is
is not easy.

3. Maybe I did lie when I said there would be no math, but you are
absolutely free to switch this off. I only want to get the very
broadest notion of the role of this problem across.



SIMON SAYS

• Daniel Simon called it “Is a function invariant under some
xor-mask?” [Sim97, §3]

• We are not going to even attempt to go through Simon’s
algorithm;

• Simon says, the problem is exponential on a probabilistic
Turing machine;

• Simon says, the problem is polynomial (with bounded
error) on a quantum Turing machine;

• I say it is good to get a feel for the problem because it
gives a sense of the kinds of things that quantum
computers can do.

J. Goldberg () 11



SIMON SAYS

• Daniel Simon called it “Is a function invariant under some
xor-mask?” [Sim97, §3]

• We are not going to even attempt to go through Simon’s
algorithm;

• Simon says, the problem is exponential on a probabilistic
Turing machine;

• Simon says, the problem is polynomial (with bounded
error) on a quantum Turing machine;

• I say it is good to get a feel for the problem because it
gives a sense of the kinds of things that quantum
computers can do.20

24
-0
5-
08

Quantum and Post-Quantum Cryptography
Simon’s Problem

Simon says

1. Seriously, I feel like I understand this stuff conceptually, but I
suck at Linear Algebra.

2. Indeed, every time I fail to grasp an eigenvalue, my sense of
self-worth takes a hit.

3. Just because we aren’t doing the math, doesn’t mean you don’t
have to endure obscure math puns. My comment about
eigenvalues was one.

4. Simon not only says these things, but he proves them.
5. Simon would almost certainly say not to do the whole “Simon
says“ thing.



CLASSICALLY

In a classical world, you need to query the function 𝑓 on the
order of 2𝑛 times to be a able to have high confidence that the
xor-mask, 𝑚, exists. You can do so probabilistically, but it is
with classical probabilities.
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QUANTUMLY

• Solving the problem can be recast as exploring a 𝑛 − 1
layer decision tree with 𝑛 branches.

• In the classical system, each transition in the tree has a
probability.

• In a quantum system, each transition in the tree has an
amplitude.

• A magic step is performed at each layer
• The amplitudes at each node interfere with the others.
• In some cases such interference can make a branch
certain or can make a branch impossible.

• After 𝑛 steps only those nodes that are certain remain.
• Those amplitudes can be converted to probabilities of 0
or 1 which can be transformed into a solution of 𝑛 bits.
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Quantumly

1. I’ve read textbook sections on the magical step, worked through
the toy examples, read Simon’s description of it. And I still don’t
grok it.

2. I will need to make my kid read it and then explain it to me.



MAINTAINING THE MAGIC

No classical interactions can happen except at the very
beginning and at the very end. Everything in the middle must
maintain the entanglement of the entire problem. So this
requires 𝑛 − 1 quantum operations on 𝑛 logical qubits. Thus

• Running Simon’s algorithm requires 2𝑛 logical qubits
• The 2𝑛 qubits must remain entangled through 𝑛 − 1
operations
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MANY QUBITS PER LOGICAL QUBIT

Algorithms of the sort described require something called
quantum error correction. And that means that you need lots
of physical qubits per logical qubit.
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Many qubits per logical qubit

1. For those who tuned out during talk of Simon’s problem, it’s
time to tune back in.



RANDOM OR DETERMINISTIC?

• I said that quantum processes are fully deterministic,
• We all know that quantum processes lead to inherent
randomness,

• It is when the quantum state docoheres that the
randomness comes in,

• Decoherence turns deterministic and reversible quantum
states into ordinary probabilities.
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DECOHERENCE

• Copenhagen (Niels Bohr and students) interpretation was
“observation causes decoherence.”

• Erwin Schrödinger was mocking the Copenhagen
interpretation of decoherence with the cat in the box
thing.

• The standard view (most of 20th century) is ”just do the
math, and don’t try to give it an interpretation.”

• Huge Everett: The math is describing reality, and we
should take it at face value. The universe splits into Many
Worlds when states become so different that they can’t
interfere with each other.

• David Deutsch: If we take Everett seriously, it gives us a
model for designing quantum computers.
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Decoherence

1. Roger Penrose: decoherence happens when the difference
between states exceeds Plank’s constant. Also, consciousness is
mysterious and so is quantum stuff, so quantum mystery is the
source of consciousness.

2. Also Penrose: I say silly things about Gödel’s Incompleteness
theorem and the minds of mathematicians despite being a
genuinely very smart mathematical physicist.

3. Bohm: [Nope. Let’s not open that can of hidden variables.]



QUANTUM ADVANTAGE AND QUANTUM
CRYPTANALYSIS
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QUANTUM ADVANTAGE



QUANTUM ADVANTAGE

Definition 2 (Quantum Advantage)
A system demonstrates quantum advantage if it performs a
computation that no non-quantum system in existence could
perform in any feasible amount of time.
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Quantum Advantage
Quantum advantage

1. You might hear this referred to as “quantum supremecy” in
older discussion.



THE PROBLEM NEEDN’T BE USEFUL

All systems to date (and in the near future) aiming to
demonstrate quantum advantage construct the problem of
“simulating a quantum computer circuit.” The QC simulates by
being one, while the classical computation problem requires
an actual simulation.
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ANSWERS MUST BE CHECKABLE

The problems used to demonstrate quantum advantage must
be contrived to be independently verifiable.
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SYCAMORE

Google’s Sycamore used 53 qubits and each run of it was able
to maintain coherence for several milliseconds. IBM had some
legitimate quibbles about whether Sycamore really achieved
advantage, but the quibbles did not challenge the main point.

We now know that it is actually possible to build and run a
quantum computer that compute things which contemporary
supercomputers cannot.
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Quantum Advantage
Sycamore

1. Very few people believed that quantum advantage couldn’t be
achived in principle, but there were some people (including me)
who believed that it was possible that quantum advantage was
impossible.



QUANTUM ADVANTAGE AND QUANTUM
CRYPTANALYSIS

QUANTUM CRYPTANALYSIS



SHOR’S ALGORITHM

• Shor’s algorithm [Sho94] changed everything;
• It solves factoring or the discrete logarithm problem in
polynomial time;

• Shor’s algorithm is clever extension of Simon’s algorithm;
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GROVER’S ALGORITHM

• In 1996 Lov Grover presented a quantum search
algorithm [Gro96].

• It is not a exponential speedup, but it is a quadratic speed
up.

• It reduces a search of a 2128 space to 264 steps.
• Grover’s algorithm is why AES-256 exists.
• Grover’s algorithm is a clever extension of Simon’s
algorithm.

J. Goldberg () 23



DO WE NEED TO WORRY ABOUT IT?

Running Shor’s algorithm to break the RSA cryptosys-
tem would require several thousand logical qubits.
With known error-correction methods, that could eas-
ily translate into millions of physical qubits, and those
probably of a higher quality than any that exist today.
I don’t think anyone is close to that, and we have no
idea how long it will take. [Aar19]
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RESOURCES

• These slides and their sources.
• David Deutsch’s book, The Fabric of Reality [Deu98] deeply
changed the way that I think about quantum weirdness. It
presents Everett’s “many worlds” view.

• Scott Aaronson’s blog Shtetl-Optimized.
• Saturday Morning Breakfast Cereal comic by Scott
Aaronson and Zach Weinersmith. The Talk
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https://github.com/jpgoldberg/sec-training//public/s/quantum.pdf
https://github.com/jpgoldberg/sec-training//-/tree/main/2022-04-08/
https://scottaaronson.blog
https://www.smbc-comics.com/comic/the-talk-3
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