
Math notes for August 19, 2020 session

Last revised: April 6, 2023

Some introduction will go here, explaining why the following might be
worth reading, but I will have to remember what my point was when I first
started to write this up. It is something about recursive definitions of (math-
ematical) functions.

1 Factorials
A textbook and prototypical example of a recursive algorithm is for factorial.
Factorials, if you recall, are typically described1 as in equation (1). The
factorial of some number n is typically written “n!”.

n! = 1× 2× 3× · · · (n− 1)× n (1)
That is something written as “5!” means 1× 2× 3× 4× 5.
The same thing in slightly fancier notation is

n! =
n∏

i=1

i (2)

but if (2) is at all confusing stick with (1).2
That traditional description doesn’t really work well as a formal definition

for a variety of reasons, so a better way to define that intent is to define it
recursively, as in equation (5).

1When presented in high school and just over the natural numbers, which is what I’m
talking about here. No one throw Γ(x) around (yet)

2The only reason that I even bothered writing equation (2) is because the “· · · in
equation (1) annoys me for reasons I won’t get into.

1



Consider the factorials of 4 and of 5. If we look at how they are con-
structed we can see that 5! is just 5 times 4!:

4! = 1× 2× 3× 4 (3)

5! = 1× 2× 3× 4× 5

5! = (1× 2× 3× 4)× 5 (added parentheses)
5! = 4!× 5

(4)

The idea that (5) expresses is that that the factorial of some number n
is n× (n− 1)!.

n! =

{
1 where n = 0;

n(n− 1)! n > 0;
(5)

It may seem counter-intuitive that 0! is defined to be 1, but doing things
this way makes many other definitions simpler and works with generalizations
of the factorial function. So just live with it.

In Listing 1.1 we see a simple iterative (or loopy) implementation in Go
factorial function, which corresponds to the definition of factorial given in
equations (1) and (2). The work is done in the for-loop, and the result is
accumulated in a variable we are calling “result”. 3

Listing 1.1 Iterative factorials for n < 21

func FactorialItrSmall(n int) int {
result := 1

for i := 2; i ≤ n; i++ {
result = result ∗ i

}
return result

}

3Factorials get big really fast, and we have to do math on big numbers. Listings 1.1
and 1.2 will fail weirdly when n gets too big. And “too big” is greater than 20 on a 64 bit
machine or above 12 on a 32-bit computer.

2



In Listing 1.2 we have an implementation that mirrors the recursive def-
inition of the factorial in equation (5). The switch construction is just to
find the case that n matches. In the default case, we just multiply n by the
factorial of n− 1.

There are various reasons why one might want to implement the factorial
one way or the other. To someone with a mathematical bent, the recursive
way is nicer as it better expresses how we think about factorials. But typically
iterative implementations are faster. Timing Listings 1.1 and 1.2 doesn’t
show the difference because we are limited to small values.

Listing 1.2 Recursive factorials for n < 21

func FactorialRecurseSmall(n int) int {
switch n {
case 0: // when n is 0

return 1
default: // any other value of n

return n ∗ FactorialRecurseSmall(n−1)
}

}

To get a better sense of the timing differences with different implementa-
tions I’ve produced three more variants. Two of them, Listings 1.3 and 1.4,
are just like the ones above except that they work on arbitrary sized integers,
so we can test with larger numbers. Doing math on arbitrary sized integers
and doing the memory allocation and management for storing those takes
much more time than using the native data types.

In the loopy versions, 1.1 and 1.3, the number of times through the for-
loop depends very tightly on n. Similarly, with the recursive versions, 1.2
and 1.4, the number of times the recursive function is called also depends
very tightly on n.

And while these have been used to illustrate the differences between it-
erative and recursive algorithms, none of these are the way that you would
actually implement these unless you have some very specific needs. And that
is because the number of computations needed is directly proportional to n.

Wouldn’t it be nice if there were a way to compute factorials, even if just
approximately, where the number of operations doesn’t grow so directly with
n? A function that works for this whose amount of computation mostly just

3



Listing 1.3 Loopy big integer factorials

// FactorialIter computes n! iteratively.
func FactorialIter(n int) ∗big.Int {

// we will accumulate the result in ‘result‘
result := big.NewInt(1)

for i := 2; i ≤ n; i++ {
bi := big.NewInt(int64(i))
result.Mul(result, bi) // result = result ∗ i

}
return result

}

Listing 1.4 Recursive big integer factorials

// FactorialRecursive computes n! recursively
func FactorialRecursive(n int) ∗big.Int {

switch n {
case 0:

return big.NewInt(1)
default:

bn := big.NewInt(int64(n))
z := new(big.Int)
return z.Mul(bn, FactorialRecursive(n−1))

}
}

4



depends on the level of precision that we want (things like the square root
work that way too) would be dandy. This is where the Gamma function,
Γ(z), comes in. The Gamma function, Γ(z), is something that you really
don’t want to think about and is really quite complex.4 What is relevant to
us here is that factorials can be defined in terms of the Γ function as in (6).

n! = Γ(n+ 1) (6)
The good news is that almost every computing language math library

will have an efficient implementation of the (real) Gamma function, as it is
very useful not only for computing factorial, but also in statistical analysis.

So Listing 1.5 gives a very efficient way to compute factorials for when we
really need to compute factorials if you don’t need the factorial of anything
larger than 170. If you do need something larger than 170! you are doing it
wrong. You probably only need the logarithms of the factorials or there is a
far more efficient approximation for the problem you are trying to solve than
using factorials directly.

Listing 1.5 Approximate factorials using Γ function (for n < 171)

func FactorialGamma(n int) float64 {
return math.Gamma(float64(n) + 1.0)

}

1.1 Timings
Largely because I wanted to teach myself how to use Go’s benchmarking
tools, I actually looked at the times of these, which you can see in Figure 1.

Similarly, we can see in Figure 2 that the memory demands on the recur-
sive algorithm rise with the size of n while the memory requirements using
the Γ(x) remain constant. Contrasting figures 1 and 2 we do see that the
memory demands of the loopy (iterative) algorithm does not grow as fast
as the time. I’ll put explaining why recursive algorithms can consume more
memory onto the stack of things that I’d like to talk about someday.

4All puns intended.

5



Figure 1: Timing of factorial computation from listings 1.3, 1.4, and 1.5

0

1000

2000

3000

10 20 30 40 50
n

T
im

e
(n

s)

Algorithm

Recursive

Loopy

Gamma

Time to compute n!

2 Handshakes
Recall the problem of how many handshakes we have in a group of n people
with each person shaking everyone else’s hand exactly once. Or let’s shift
this to something more socially distant and actually relevant. If we have n
people and we need a (symmetric) encryption key for each pair, then how
many of these keys do we need.

So if we have five people: Alice, Bob, Charlie, Dana5, and Eve. One
(very inefficient) way of doing computing the number of keys needed is to
work through each pair and count them. So Alice, will have a separate key
with each of the other four. That gives us four so far. Bob already has a key
with Alice, so he just needs one for the other three. So that gives us another
three, making a total (so far) of seven. We’ve already counted Charlie’s keys
with Alice and Bob, but he also needs a key with each of Zul and Eve. So
that brings us to a total of nine. Finally, we need a key for Zul and Eve,
bringing our grand total to 10.

5There is no Dana. Only Zul.

6



Figure 2: Memory requirements of factorial computation from listings 1.3,
1.4, and 1.5

0

2000

4000

10 20 30 40 50
n

M
em

or
y

(b
yt

es
)

Algorithm

Recursive

Loopy

Gamma

Memory to compute n!

7



That approach of actually running through the set of {1, 2, . . . , n} items
and counting up the possible pairs is illustrated in Listing 2.1.

Listing 2.1 Counting the handshakes, one by one

func HandshakeCounting(n int) int {
count := 0 // we will accumulate our count here

for i := 1; i < n; i++ {
for j := i + 1; j ≤ n; j++ {

count = count + 1
}

}
return count

}

Now moving on to Daniel’s recursive algorithm for the handshaking al-
gorithm, consider the n-th person added to the group as adding n − 1 new
handshakes. And so we can define the function as in equation (7), which can
be implemented as shown in Listing 2.2.

f(n) =

{
0 where n = 0;

(n− 1) + f(n− 1) where > 0.
(7)

Listing 2.2 Counting the handshakes recursively

func HandshakeRecursive(n int) int {
switch n {
case 0:

return 0
default:

return (n − 1) + HandshakeRecursive(n−1)
}

}

Fortunately, there is a much simpler way of performing the computation.
Looking at and thinking about equation 7, we can see (after a while of think-
ing about it) that for each of the n people we are adding n − 1 keys. But

8



because each pair of people share a key, we really just need half of those. So
the whole thing can be summed up as

f(n) =
n(n− 1)

2
(8)

=
n2 − n

2
(9)

That naturally leads to the simplest algorithm for this problem as shown
in Listing 2.3.

Listing 2.3 Calculating handshakes from a formula

func HandshakeClosed(n int) int {
return (n ∗ (n − 1)) / 2

}

3 Exponentiation
We were all taught at some point that ab means multiplying a to itself b
times. Something like

bn = b× b× · · · × b︸ ︷︷ ︸
n occurrences of b

(10)

Consider, for example, that 37 is three times bigger than 36. So we can
recognize that 37 = 3× 37−1. More generally

bn+1 = b× bn (11)
We also know that we want something like 31 to equal three, and so there

is one other things that we need to make the definition in (11) to make it
work.

bn+1 =

{
b when n = 0,

b× bn otherwise.
(12)

9



From either definition of bn would get the important fact that

bn × bm = bn+m (13)

but I will skip how we get there. Either accept that or play with it for a bit
to see that this at least seems to make sense.

But there are some things we can conclude from (12) that we cannot from
(10). Suppose we want to know whether we can define exponentiation for
when n is not a positive whole number. The definition in (10) just can’t even
be expressed when n isn’t some positive whole number. For the definition
in (12) we may not know how it would work, but at the outset we don’t know
that it can’t work.

If we want to keep bn+1 = b × bn true for all n, then we can ask what
happens when n = 0. Let’s look at this when n = 0 and b = 3.

30+1 = 31 = 3× 30 = 3 (14)
and so if 3 × 30 = 3 then 30 must be 1. This remains true for any base, b
(expect for when b zero): b0 = 1. In fact, many people prefer a slight variant
of (12)

bn =

{
1 when n = 0,

b× bn−1 otherwise.
(15)

Now let’s ask about 3 1
2 . What could that mean? Well, making use of the

fact in (13) that bn × bm = bn+m, we know that

3
1
2 × 3

1
2 = 3

1
2
+ 1

2 = 31 = 3 (16)

So we have a thing, 3
1
2 , that when multiplied to itself is 3. This makes

3
1
2 =

√
3.

My first point here is that the recursive definition of exponentiation is
much more general than the loopy one. It can be extended to n being negative
or complex as well in ways that make sense and preserve all of the properties
of exponentiation that are found useful. This is one of the reasons why math
teaching might use the iterative definition (10) at first to give people an idea
of it, but will actually use a more abstract definition as in (15).

Even though (15) works as a definition when n is negative or fractional,
it does no better than (10) at giving us a way to compute bn when n is
not a positive whole number. But rest assured that just as Γ(x) came to

10



the rescue of computing the factorial, the actual algorithms computers use
for exponentiation (for floating point numbers) is based on an even more
abstract definition and can be computed more efficiently.

4 Algorithms
There is a beauty of expressiveness in defining things recursively. But often
times recursive algorithms are slower and consume more memory than their
iterative counter-parts. As Daniel said that when trying to figure out the
complexity of an algorithm it is easier to break it down into different forms
as well.

11


