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FROM FACTORING PROBLEM TO CRYPGORAPHY

• Our goal is to turn the (believed) NP problem of factoring
into useful cryptography.

• Despite all of the math we’ve gone through over the past
months, there is still more to learn.

• We need to understand properties of modular arithmetic
when the modulus is a composite number.

J. Goldberg () 1



COMPOSITE MODULI



MULTIPLICATION TABLE

× 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 2 4 6 8 10 12 14 1 3 5 7 9 11 13
3 3 6 9 12 0 3 6 9 12 0 3 6 9 12
4 4 8 12 1 5 9 13 2 6 10 14 3 7 11
5 5 10 0 5 10 0 5 10 0 5 10 0 5 10
6 6 12 3 9 0 6 12 3 9 0 6 12 3 9
7 7 14 6 13 5 12 4 11 3 10 2 9 1 8
8 8 1 9 2 10 3 11 4 12 5 13 6 14 7
9 9 3 12 6 0 9 3 12 6 0 9 3 12 6
10 10 5 0 10 5 0 10 5 0 10 5 0 10 5
11 11 7 3 14 10 6 2 13 9 5 1 12 8 4
12 12 9 6 3 0 12 9 6 3 0 12 9 6 3
13 13 11 9 7 5 3 1 14 12 10 8 6 4 2
14 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 1: Multiplication modulo 15
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Multiplication table

1. There should be a column and a row for 0, but I left that for
space.



MULTIPLICATION TABLE (AGAIN)

× 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 2 4 6 8 10 12 14 1 3 5 7 9 11 13
3 3 6 9 12 0 3 6 9 12 0 3 6 9 12
4 4 8 12 1 5 9 13 2 6 10 14 3 7 11
5 5 10 0 5 10 0 5 10 0 5 10 0 5 10
6 6 12 3 9 0 6 12 3 9 0 6 12 3 9
7 7 14 6 13 5 12 4 11 3 10 2 9 1 8
8 8 1 9 2 10 3 11 4 12 5 13 6 14 7
9 9 3 12 6 0 9 3 12 6 0 9 3 12 6
10 10 5 0 10 5 0 10 5 0 10 5 0 10 5
11 11 7 3 14 10 6 2 13 9 5 1 12 8 4
12 12 9 6 3 0 12 9 6 3 0 12 9 6 3
13 13 11 9 7 5 3 1 14 12 10 8 6 4 2
14 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 2: Multiplication modulo 15: Highlighting some rows



MULTIPLICATION TABLE (YET AGAIN)

× 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 2 4 6 8 10 12 14 1 3 5 7 9 11 13
3 3 6 9 12 0 3 6 9 12 0 3 6 9 12
4 4 8 12 1 5 9 13 2 6 10 14 3 7 11
5 5 10 0 5 10 0 5 10 0 5 10 0 5 10
6 6 12 3 9 0 6 12 3 9 0 6 12 3 9
7 7 14 6 13 5 12 4 11 3 10 2 9 1 8
8 8 1 9 2 10 3 11 4 12 5 13 6 14 7
9 9 3 12 6 0 9 3 12 6 0 9 3 12 6
10 10 5 0 10 5 0 10 5 0 10 5 0 10 5
11 11 7 3 14 10 6 2 13 9 5 1 12 8 4
12 12 9 6 3 0 12 9 6 3 0 12 9 6 3
13 13 11 9 7 5 3 1 14 12 10 8 6 4 2
14 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 3: Multiplication modulo 15: Highlighting other rows



ROWS WITH 1

• All of the green rows contain 1.

• None of the yellow rows contain 1.

Example 1

• 2 × 8 ≡ 1
• There is no 𝑥 such that 3 × 𝑥 ≡ 1.
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ROWS WITH 0

• All of the yellow rows contain 0.
• None of the green rows contain 0.

Example 2

• 10 × 3 ≡ 0
• There is no 𝑥 > 0 such that 7 × 𝑥 ≡ 0.

J. Goldberg () 6



ROWS WITH ALL OF THE NON-ZERO ELEMENTS

• All of the green rows contain all of the numbers 1
through 14.

• None of the yellow rows contain all of the numbers 1
through 14.

Example 3

• The row for 4 contains all of the numbers 1 through 14.
• The row for 6 contains the numbers 3, 6, 9, 12, and 0;
missing 1, 2, 4, 5, 7, 8, 10, 11, 13, and 14.

J. Goldberg () 7



COPRIME OR NOT

• The green rows are for multiplying numbers that are
coprime with 15: {1, 2, 4, 8, 11, 13, 14}

• The yellow rows are for multiplying numbers that are not
coprime with 15: {3, 5, 6, 9, 10, 12}

J. Goldberg () 8



RELATIVELY PRIME

Definition 4 (Coprime)
Two integers 𝑎 and 𝑏 are coprime if and only if the largest
integer that divides both of them is 1.

Other ways to express the same concept include “𝑎 and 𝑏 are
relatively prime” and “gcd(𝑎, 𝑏) = 1”.

J. Goldberg () 9
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Relatively prime

1. When we are in the world of integers, we can use the word
“divide” to mean integer division with no remainder.

2. We are in (a part of) the world of integers.



EXAMPLES FOR 15

Example 5

• 3 and 15 are not coprime because 3 divides both of them.
• 10 and 15 are not coprime because 5 divides both of them.
• 8 and 15 are coprime because 1 is the largest number that
divides both of them.

J. Goldberg () 10



COPRIME WITH 15

𝑛 gcd(𝑛, 15) coprime with 15?

1 1 3

2 1 3

3 3 5

4 1 3

5 5 5

6 3 5

7 1 3

8 1 3

9 3 5

10 5 5

11 1 3

12 3 5

13 1 3

14 1 3

Table 4: Which numbers 0 < 𝑛 < 15 are coprime with 15



COMPOSITE MODULI

MAKING A GROUP



GREEN FOR GROUP

If we remove the yellow rows (and corresponding columns) we
get a group.

× 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14
2 2 4 8 14 1 7 11 13
4 4 8 1 13 2 14 7 11
7 7 14 13 4 11 2 1 8
8 8 1 2 11 4 13 14 7
11 11 7 14 2 13 1 8 4
13 13 11 7 1 14 8 4 2
14 14 13 11 8 7 4 2 1

Table 5: Operation table for ℤ×
15

J. Goldberg () 12



THE GROUP ℤ×
15

Definition 6 (ℤ×
15)

The group ℤ×
15 is the set of elements, {1, 2, 4, 7, 8, 11, 13, 14},

along with the operation multiplication modulo 15.

J. Goldberg () 13
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Making a group
The group ℤ×

15

1. Note that the members of the group do not include 0, 3, 5, 6, 9,
10, and 12.



ℤ×
15 AND ITS GROUP PROPERTIES

ℤ×
15 is an abelian (commutative) group because for all

elements of the group 𝑎, 𝑏 and 𝑐

• It is closed. 𝑎 × 𝑏 is also in the group.
• There is an identity element, which in this case is 1, such
that 𝑎 × 1 ≡ 𝑎.

• Every element has an inverse: For every 𝑎 there is a
member of the group that we will call ‘𝑎−1’ such that
𝑎 × 𝑎−1 ≡ 1.

• The operation is commutative, making the group abelian:
𝑎 × 𝑏 ≡ 𝑏 × 𝑎

• The operation is associative: (𝑎 × 𝑏) × 𝑐 ≡ 𝑎 × (𝑏 × 𝑐).

J. Goldberg () 14



ℤ×
15 AND ITS GROUP PROPERTIES

ℤ×
15 is an abelian (commutative) group because for all

elements of the group 𝑎, 𝑏 and 𝑐

• It is closed. 𝑎 × 𝑏 is also in the group.
• There is an identity element, which in this case is 1, such
that 𝑎 × 1 ≡ 𝑎.

• Every element has an inverse: For every 𝑎 there is a
member of the group that we will call ‘𝑎−1’ such that
𝑎 × 𝑎−1 ≡ 1.

• The operation is commutative, making the group abelian:
𝑎 × 𝑏 ≡ 𝑏 × 𝑎

• The operation is associative: (𝑎 × 𝑏) × 𝑐 ≡ 𝑎 × (𝑏 × 𝑐).20
24
-0
5-
08

RSA
Composite moduli

Making a group
ℤ×

15 and its group properties

1. By now, many of you should be able to recite the properties of a
group in your sleep. And perhaps I have put you to sleep. But
we also have newcomers.



TOTIENTS



HOW MANY COPRIMES?

• There are eight numbers less than 15 that are coprime
with 15.

• This is typically written “𝜙(15) = 8’, using the small Greek
letter ‘𝜙’ (phi) or the variant form ‘𝜑’.

• 𝜙(𝑛) is called the “totient of 𝑛”.

J. Goldberg () 15



TOTIENT

Definition 7 (Totient)
The totient of a number 𝑛, written 𝜙(𝑛), is the number of
numbers which are coprime with 𝑛 and less than 𝑛.

J. Goldberg () 16



TOTIENT
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Totient

1. The term “totient” was introduced in 1879 with no explanation
by Sylvester [Syl79]. Seems to be some sort of total on analogy
to “quotient.”



TOTIENT OF 15

• 𝜙(15) = 8
• 15 = 3 × 5
• 𝜙(15) = (3 − 1)(5 − 1)
• That is not a coincidence, and we will return to it.

J. Goldberg () 17



FERMAT’S LITTLE THEOREM



LITTLE VS LAST

• Fermat’s Last Theorem is famous because he never proved
it.

• Fermat never proved the “little” theorem either.
• Fermat’s Little Theorem was extended and proved by Euler.
• Unlike Fermat’s Last Theorem, Fermat’s Little Theorem is
enormously useful.

J. Goldberg () 18
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Little vs Last

1. The key to proving Fermat’s Last Theorem in 1994 rested on an
important theorem about elliptic curves over rational fields.



FERMAT’S LITTLE THEOREM

Theorem 8 (Fermat’s Little Theorem)

If 𝑝 is prime and 𝑎 is not a multiple of 𝑝 then

𝑎𝑝−1 ≡ 1 (mod 𝑝)

J. Goldberg () 19



FLT WITH 𝑝 − 1 = 6

𝑎 1 2 3 4 5 6

𝑎7−1 1 64 729 4096 15625 46656
𝑎7−1 (mod 7) 1 1 1 1 1 1

Table 6: Illustrating FTL with exponent 7 − 1

J. Goldberg () 20



MULTIPLY BY 𝑎

𝑎𝑝−1 ≡ 1 (mod 𝑝) (Theorem 8)

𝑎𝑝−1 ⋅ 𝑎 ≡ 1 ⋅ 𝑎 (mod 𝑝) (Multiply each side by 𝑎)

𝑎𝑝 ≡ 𝑎 (mod 𝑝) (Exponentiation rules!)

J. Goldberg () 21



ALSO FERMAT’S LITTLE THEOREM

Theorem 9 (Also Fermat’s Little Theorem)

If 𝑝 is prime and 𝑎 is not a multiple of 𝑝 then

𝑎𝑝 ≡ 𝑎 (mod 𝑝)

J. Goldberg () 22



FLT WITH 𝑝 = 7

𝑎 1 2 3 4 5 6

𝑎7 1 128 2187 16384 78125 279936
𝑎7 (mod 7) 1 2 3 4 5 6

Table 7: Illustrating Fermat’s Little Theorem with 𝑝 = 7

J. Goldberg () 23



HISTORICAL NOTE

• Chinese mathematicians were long aware of this, perhaps
as far back as 500 BCE.

• Fermat rediscovered it and said to have a proof in 1640.
• Leibniz proved it before 1683 in an unpublished
manuscript.

• Euler published a proof in 1740.
• Euler proved an important generalization of FLT in the
same year.

J. Goldberg () 24
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Historical note

1. There was some destruction of books (and killing of scholars)
during the Qin dynasty, but modern historians do not think it
was anywhere as bad as Han dynasty reports made it out to be.

2. Not publishing a proof was common. It was a time of weird
rivelries, a penchent for keeping discoveries secret, the fact that
Fermet was an amateur who wrote things in letters to his
friends, and there really wasn’t a system for publishing proofs
at the time.

3. There is a great deal of historical scholarship on what Leibniz
knew and when.

4. It is Euler’s generalation that we go to next.



FERMAT’S LITTLE THEOREM

EULER’S TOTIENT THEOREM



EULER’S EXTENSION

Theorem 10 (Euler’s Totient Theorem)

If 𝑎 and 𝑛 are coprime

𝑎𝜙(𝑛) ≡ 1 (mod 𝑛)

J. Goldberg () 25



MULTIPLYING EULER’S THEOREM

𝑎𝜙(𝑛) ≡ 1 (mod 𝑛)
𝑎𝜙(𝑛) ⋅ 𝑎 ≡ 1 ⋅ 𝑎 (mod 𝑛) (Multiply both sides by 𝑎)

𝑎𝜙(𝑛)+1 ≡ 𝑎 (mod 𝑛) (Exponentiation tricks)

J. Goldberg () 26



ALSO EULER’S THEOREM

Theorem 11 (Also Euler’s Totient Theorem)

If 𝑎 and 𝑛 are coprime

𝑎𝜙(𝑛)+1 ≡ 𝑎 (mod 𝑛)

J. Goldberg () 27



COMPUTING 𝜙(𝑛)

Definition 12 (Totient formula for 𝑛 = 𝑝𝑞; 𝑝 ≠ 𝑞)
When 𝑛 = 𝑝𝑞 where 𝑝 and 𝑞 are distinct primes,
𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1).

J. Goldberg () 28
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Euler’s Totient Theorem
Computing 𝜙(𝑛)

1. Euler provided a much more general formula for computing
totients, but this simple case is all we need. In all cases, one
needs the prime factors of 𝑛 to compute 𝜙(𝑛).



EULER’S THEOREM MODULO 15

𝑎 1 2 4 7 8

𝑎𝜙(15) 1 256 65536 5764801 16777216
𝑎𝜙(15) (mod 15) 1 1 1 1 1

Table 8: Illustrating Euler’s theorem with modulus 15. 𝜙(15) = 8

J. Goldberg () 29



RSA



RSA PUBLIC KEY

• A prime public exponent, 𝑒, which is not unique to the
user and is typically 65537.

• A public modulus, 𝑁 which is unique to the user and is
the product of two primes.

J. Goldberg () 30
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RSA public key

1. 65537 is 0b10000000000000001. That is a lot of 0s and only two
1s. This means that the square-and-multiply algorithm only has
to do two multiplies (and 16 squarings).

2. The square-and-multipy algorithm for exponentiation is
analogous to the double-and-add algorithm we went over when
covering ECHD.

3. Because 𝑒 is a public modulus, we do not need to worry about
side channel attacks revealing it, and so using
square-and-multiply is fine.

4. The standards allow for public moduli to be constructed as the
products of more than two primes. There were reasonable
reasons at the time, but I don’t think that any system has
actually made use of that flexibility.



RSA PRIVATE KEY

• Everything that is in the public key
• The primes 𝑝 and 𝑞 such that 𝑁 = 𝑝𝑞
• A decryption exponent, 𝑑, computed from 𝑝, 𝑞 and 𝑒.

J. Goldberg () 31
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RSA private key

1. There are other things that are precomputed that are helpful for
performing computations, we need to focus on 𝑑 here.



THE DECRYPTION EXPONENT

Definition 13 (The decryption secret)

The decryption exponent, 𝑑, is computed from the public
exponent 𝑒 and the factors, 𝑝 and 𝑞, of public modulus, 𝑁 .

𝑑 = 𝑒−1 mod 𝜙(𝑁)

J. Goldberg () 32
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The decryption exponent

1. There is an efficient algorithm for computing the modular
multiplicative inverse. And there are even quicker ones when
you know the prime factors of the modulus as we do.



WHAT DOES 𝑎 ≡ 1 (mod 𝑀) REALLY MEAN?

“𝑎 ≡ 1 (mod 𝑀)” means (among other things)

1. If we divide 𝑎 by 𝑀 we get a remainder of 1;
2. 𝑎 is one more than some multiple of 𝑀 ;
3. There exists some integer 𝑘 such that 𝑎 = 𝑘𝑀 + 1.

That last notion, 𝑎 = 𝑘𝑀 + 1, is going to useful in what follows.

J. Goldberg () 33
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What does 𝑎 ≡ 1 (mod 𝑀) really mean?

1. Early on, I made a choice to use ‘=’ in all the places it should be
used and also where ‘≡’ should be used. As I wasn’t defining
modular operations formally and pedantically, I thought I could
get away with it. I am now paying the price, as the distinction
between the two would be really useful here, but it would mean
that I would have to use them correctly and consistently
throughout.



THIS WILL BE USEFUL LATER

A useful fact follows from how we defined 𝑑:

𝑒𝑑 ≡ 1 (mod 𝜙(𝑁))
𝑒𝑑 = 𝑘𝜙(𝑁) + 1 (For some integer 𝑘)

(1)

J. Goldberg () 34



ENCRYPTION AND DECRYPTION

𝑐 = 𝑚𝑒 mod 𝑁 (2)
𝑚 = 𝑐𝑑 mod 𝑁 (3)

J. Goldberg () 35



WHY DOES THAT WORK?

𝑐𝑑 ≡ (𝑚𝑒)𝑑 (From 𝑐 ≡ 𝑚𝑒)

≡ 𝑚𝑒𝑑 (From how exponents work)

≡ 𝑚𝑘𝜙(𝑁)+1 (From Eq. 1 “a useful fact”) (4)
≡ 𝑚 (A miracle occurs)

J. Goldberg () 36
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Why does that work?

1. The miracle involves Euler’s Theorem.



Figure 1: “Then a miracle occurs” Comic by Sidney Harris. Used by
permission of ScienceCartons

J. Goldberg () 37

http://www.sciencecartoonsplus.com/pages/bio.php


Figure 1: “Then a miracle occurs” Comic by Sidney Harris. Used by
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1. Time for me to go into Certify to get reimbursed for the
licensing.

http://www.sciencecartoonsplus.com/pages/bio.php


THE MIRACLE

𝑐𝑑 ≡ 𝑚𝑘𝜙(𝑁)+1 (Our pre-miracle equation (4))

≡ 𝑚𝑘𝜙(𝑁) ⋅ 𝑚1 (From how exponents work)

≡ (𝑚𝜙(𝑁))𝑘 ⋅ 𝑚1 (Also from how exponents work)

≡ 1𝑘 ⋅ 𝑚1 (From Euler’s Theorem)

≡ 1 ⋅ 𝑚 (From how 1 works)

≡ 𝑚 (Also from how 1 works)
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THE MIRACLE

𝑐𝑑 ≡ 𝑚𝑘𝜙(𝑁)+1 (Our pre-miracle equation (4))

≡ 𝑚𝑘𝜙(𝑁) ⋅ 𝑚1 (From how exponents work)

≡ (𝑚𝜙(𝑁))𝑘 ⋅ 𝑚1 (Also from how exponents work)

≡ 1𝑘 ⋅ 𝑚1 (From Euler’s Theorem)

≡ 1 ⋅ 𝑚 (From how 1 works)

≡ 𝑚 (Also from how 1 works)

20
24
-0
5-
08

RSA
RSA

The miracle

1. This slide is for additional material For those who want to see
why I can ignore the 𝑘

2. I hope that you all see why I did Diffie-Hellman first. It gave
everyone practice with modular exponentiation in smaller bites.



HOW STRONG IS RSA?



HOW STRONG IS RSA?

KEY RECOVERY



KEY RECOVERY IS AS HARD AS FACTORING

1. There is a polynomial time algorithm for computing 𝑑 from
the factors of 𝑁 .

2. Therefore key recovery is not harder than factoring.
3. There is a polynomial time algorithm for computing the
factors of 𝑁 from 𝑑.

4. Therefore factoring is not harder than key recovery.
5. From 2 and 4 we know that RSA key recovery and factoring
are equally hard.

J. Goldberg () 39
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Key recovery
Key recovery is as hard as factoring

1. It is simply how we computed 𝑑 in the first place.
2. Another way to say 𝑋 is not harder than 𝑌 is to say 𝑌 is at least
as hard as 𝑋. So factoring is at least as hard as key recovery.

3. Computing the factors of 𝑁 from 𝑑 and 𝑒 involves a messy
algorithm. It would be tedious to describe and show why it
works. But it exists and is poly(|𝑁|).



DOES THIS MEAN THAT BREAKING RSA IS AS HARD AS FACTORING?

Q: Does this mean that breaking RSA is as hard as
factoring?

A: No! Key recovery is not the only way to break a
cipher scheme.

J. Goldberg () 40



HOW STRONG IS RSA?

SECURITY NOTIONS



NOTIONS AGAIN

• We don’t know all the ways to attack an encryption
scheme.

• We can only list the ways we know of to attack an
encryption scheme.

• But we can define what it means for a scheme to be
broken irrespective of how it is broken.

• An encryption scheme is broken if having the ciphertext
reveals new information about the content of the
plaintext.

• In practice these definitions are in terms of adversaries
playing well-defined games against the scheme.
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Security notions
Notions again

1. We went through notions and IND-CPA more than half a year
ago, so this is a brief recap.

2. It is very important to demostrate that a scheme is secure
against such attacks.

3. “New information” is defined in a way that makes traffic
analysis somebody else’s problem.

4. The proof that the IND-CPA game definition and the
“ciphertext provides no new information” definitions are the
same is left as an excercie to the reader.

5. Or you could take my word for it that there is such a proof.



IND-CPA GAME: THE RSA EDITION

The adversary, A, plays a game against the challenger that
goes like this

1. During setup, the challenger generates a random RSA key
pair. The public key, pk, is given to A.

2. The challenger flips a fair coin to set a bit, 𝑏, to either 0 or
1. 𝑏 is not given to A.

3. A creates two plaintexts of its choosing, 𝑚0 and 𝑚1.
4. The challenger encrypts 𝑚0 or 𝑚1 depending on the
random bit 𝑏 and returns the ciphertext 𝑐𝑏 to A.

5. A studies what it has {pk, 𝑚0, 𝑚1, 𝑐𝑏} to decide which of
𝑚0 or 𝑚1 was encrypted.

6. If A’s conclusion is correct A wins.
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Security notions
IND-CPA game: The RSA edition

1. This game captures the notion that the ciphertext does not give
an attacker any new information about the content of the
plaintext.



RSA ASSUMPTION

Definition 14 (RSA Assumption)
No polynomial time algorithm can win the IND-CPA RSA
game (meaningfully) better than half the time.
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PROVING IN THE RIGHT DIRECTION

Tired If you can break problem 𝑃 , you can break my
cipher scheme. Therefore my cipher scheme is as
hard as 𝑃

Wired If you can break my cipher scheme, you can break
problem 𝑃 . Therefore my scheme is at least as
hard as 𝑃 .

J. Goldberg () 44



IS BREAKING RSA AS HARD AS FACTORING?

Q: Is breaking RSA as hard as factoring?
A1: For “textbook RSA” described so far, the answer is

no.
A2: For non-deterministic RSA the answer is that it is

complicated.
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Security notions
Is breaking RSA as hard as factoring?

1. The answer is probably “no” for small public exponent 𝑒. For
suffiently large 𝑒 the answer is “we hope so.”



HOW STRONG IS RSA?

NON-DETERMINISTIC ENCRYPTION



ENCRYPTION MUST BE RANDOMIZED

As described so far, A can win the IND-CPA game 100% of the
time. A can simply encrypt 𝑚0 and 𝑚1 with the public key to
generate 𝑐0 and 𝑐1, one of which will be equal to the challenge
ciphertext 𝑐𝑏.
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OAEP

• Optimal Asymmetric Encryption Padding (OAEP)
• Does the job analogous to the padding used in block
ciphers

• Does the job analogous to the nonce/IV used in block
ciphers

• It does some hashing with the randomness to make sure
that the bit sequence (other than first two bits) that goes
through actual RSA has no usable structure.

J. Goldberg () 47



AVOID PKCS1 – USE OAEP

• In addition to OAEP, there is another RSA padding scheme,
PKCS1.

• PKCS1 does almost everything right, but OAEP is superior
in every respect.

• Many cryptographic libraries offer both PKCS1 and OAEP
modes.

• Do not use PKCS1 unless you have to.
• If you must use PKCS1, be aware that you can sometimes
get a “successful” decryption of mangled data.
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Non-deterministic encryption
Avoid PKCS1 – Use OAEP

1. crypto libraries really should do more to discourage PKCS1. One
way would be to make it unavailable when creating new
messages.



HOW STRONG IS RSA?

WHAT WE KNOW ABOUT RSA



FACTORING ASSUMPTION

Definition 15 (Factoring assumption)
There is no poly(|𝑥|) algorithm which can factor an
appropriately chosen 𝑥.
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WHAT A PROOF WOULD LOOK LIKE

1. Imagine that a polynomial time algorithm, A, has access
to an oracle that has broken RSA encryption.

2. We don’t have any knowledge of the internal workings of
the oracle, but we can feed it ciphertexts and get out
plaintexts.

3. Can A use its freedom to get decryptions from the oracle
to factor the public key?

4. If yes, then the RSA problem is at least as hard as
factoring.

So far no such proof exists.
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What we know about RSA
What a proof would look like

1. Anyone else thinking of Anselm of Cambridge’s ontological
argument? Well what we are doing here really is solid and
works.

2. It is unlikely that such a proof exists for the RSA assumption as
it stands. There are special cases, such as for certain values of
𝑒, where a polynomial algorithm does exist. So the RSA
assumption will need refining.



ALGORITHMS



GREATEST COMMON DIVISOR

def gcd(a: int, b: int) -> int:
while a != 0:

a, b = b % a, a
return b

Figure 2: Euclid’s Algorithm for greatest common divisor
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Greatest Common Divisor

1. The document from the Cat in the Middle session provides a lot
of detail about why this works and varient forms of it.



EXTENDED EUCLIDEAN ALGORITHM

def egcd(a: int, b: int) -> tuple[int, int, int]:
x0, x1, y0, y1 = 0, 1, 1, 0
while a != 0:

(q, a), b = divmod(b, a), a
y0, y1 = y1, y0 - q * y1
x0, x1 = x1, x0 - q * x1

return b, x0, y0

Figure 3: Extended Euclidian Algorithm (EEA): Returns 𝑔, 𝑥, and 𝑦 such
that 𝑎𝑥 + 𝑏𝑦 = 𝑔 = gcd(𝑎, 𝑏)
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Extended Euclidean Algorithm

1. It is specularly tedious to work through why the EEA works or
even what it is doing. The very rough idea is that it is keeping a
running record of intermediate quotiants for current and
previous run throughs, so that it can do a little bit of
backtracking at the end.



MODULAR INVERSE

def modinv(a:int, m:int) -> int|None:
g, x, _ = egcd(a, m)
if g != 1:

return None
return x % m

Figure 4: General case for computing modular inverse using the
Extended Euclidean Algorithm. Returns None if modular inverse
doesn’t exist.
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EULER’S TOTIENT THEOREM AGAIN

In a mod 𝑚 world

𝑎𝑎−1 ≡ 1 (Definition of 𝑎−1)

𝑎𝜙(𝑚) ≡ 1 (Euler’s theorem)

𝑎𝑎𝜙(𝑚)−1 ≡ 1 (How exponents work)

𝑎𝑎𝜙(𝑚)−1 ≡ 𝑎𝑎−1 (𝑎 times its inverse is 1)

𝑎𝜙(𝑚)−1 ≡ 𝑎−1 (Multiply by 𝑎−1 (divide by 𝑎))

J. Goldberg ()



EULER’S TOTIENT THEOREM AGAIN

In a mod 𝑚 world

𝑎𝑎−1 ≡ 1 (Definition of 𝑎−1)

𝑎𝜙(𝑚) ≡ 1 (Euler’s theorem)

𝑎𝑎𝜙(𝑚)−1 ≡ 1 (How exponents work)

𝑎𝑎𝜙(𝑚)−1 ≡ 𝑎𝑎−1 (𝑎 times its inverse is 1)

𝑎𝜙(𝑚)−1 ≡ 𝑎−1 (Multiply by 𝑎−1 (divide by 𝑎))

20
24
-0
5-
08

RSA
Algorithms

Euler’s totient theorem again

1. The intuition (at least for me) is that if 𝜙(𝑚) number of 𝑎s
multiplied together take you around to 1 then 𝜙(𝑚) − 1 number
of 𝑎s take you to the thing you could multiply by one more 𝑎 to
get to 1. That thing that you multiply “one more 𝑎 to to get 1 is
the inverse of 𝑎.

2. On “how exponents work”: 𝑎𝑥 = 𝑎𝑎𝑥−1.



MODULAR INVERSE WITH 𝜙(𝑚)

def modinv_tot(a:int, m:int, tot: int) -> int:
return pow(a, tot - 1, m)

Figure 5: Modular inverse using 𝜙(𝑚). Produces erroneous results
(without warning) if gcd(𝑎, 𝑚) ≠ 1 or if an incorrect totient is
provided.
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RESOURCES

• These slides
• Exceedingly extensive notes on the Cat in the Middle
computation. Those notes include explanations of some
of the algorithms discussed.

• Sources

J. Goldberg ()

https://github.com/jpgoldberg/sec-training//public/s/rsa.pdf
https://github.com/jpgoldberg/sec-training//public/s/citm-rsa.pdf
https://github.com/jpgoldberg/sec-training//-/tree/main/2022-04-08/
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