Source code for toy_crypto.birthday

import math

from . import types


MAX_QBIRTHDAY_P = 1.0 - (10**-8)
"""Maximum probability that Q can handle."""

EXACT_THRESHOLD = 1000
"""With auto mode, the threshold for using exact or approximate modes."""


def _pbirthday_exact(
    n: types.PositiveInt, classes: types.PositiveInt, coincident: int
) -> types.Prob:
    # use notation  from Diconis and Mosteller 1969
    c = classes  # classes
    k = coincident

    if k < 2:
        return types.Prob(1.0)
    if k > 2:
        return _pbirthday_approx(n, c, coincident=k)

    if n >= c:
        return types.Prob(1.0)

    v_dn = math.perm(c, n)
    v_t = pow(c, n)

    p = 1.0 - float(v_dn / v_t)
    if not types.is_prob(p):
        raise Exception("this should not happen")
    return p


def _pbirthday_approx(
    n: types.PositiveInt, classes: types.PositiveInt, coincident: int
) -> types.Prob:
    # DM1969 notation
    c = classes
    k = coincident

    if n >= c * (k - 1):
        return types.Prob(1.0)

    if k < 2:
        return types.Prob(1.0)

    # p = 1.0 - math.exp(-(n * n) / (2 * d))

    # lifted from R src/library/stats/R/birthday.R
    LHS = n * math.exp(-n / (c * k)) / (1 - n / (c * (k + 1))) ** (1 / k)
    lxx = k * math.log(LHS) - (k - 1) * math.log(c) - math.lgamma(k + 1)
    p = -math.expm1(-math.exp(lxx))
    if not types.is_prob(p):
        raise Exception("this should not happen")
    return p


[docs] def P( n: int, classes: int = 365, coincident: int = 2, mode: str = "auto" ) -> types.Prob: """probability of at least 1 collision among n individuals for c classes". The "exact" method still involves floating point approximations and may be very slow for large n. :raises ValueError: if not all arguments are positive integers. """ c = classes k = coincident if not types.is_positive_int(n): raise ValueError("n must be a positive integer") if not types.is_positive_int(c): raise ValueError("classes must be a positive integer") if not types.is_positive_int(k): raise ValueError("coincident must be a positive integer") if k == 1: return types.Prob(1.0) if mode == "auto": mode = "exact" if c < EXACT_THRESHOLD else "approximate" match mode: case "exact": return _pbirthday_exact(n, c, coincident=k) case "approximate": return _pbirthday_approx(n, c, coincident=k) case _: raise ValueError('mode must be "auto", "exact", or "approximate"')
[docs] def Q(prob: float = 0.5, classes: int = 365, coincident: int = 2) -> int: """Returns minimum number n to get a probability of p for c classes. :raises ValueError: if prop is not a probability. """ # Use DM69 notation p = prob c = classes k = coincident if not types.is_prob(p): raise ValueError(f"p ({p}) must be a probability") if p > MAX_QBIRTHDAY_P: return c * (k - 1) + 1 # Lifted from R src/library/stats/R/birthday.R if p == types.Prob(0): return 1 # First approximation # broken down so that I can better understand this. term1 = (k - 1) * math.log(c) # log(c^{k-1}) term2 = math.lgamma(k + 1) # log k! term3 = math.log(-math.log1p(-p)) # ? log_n = (term1 + term2 + term3) / k # adding log x_i is log prod x_i n = math.exp(log_n) n = math.ceil(n) if P(n, c, coincident=k) < p: n += 1 while P(n, c, coincident=k) < p: n += 1 elif P(n - 1, c, coincident=k) >= p: n -= 1 while P(n - 1, c, coincident=k) >= p: n -= 1 return n