Source code for toy_crypto.ec

"""Simple elliptic curve groups."""

import sys

if sys.version_info < (3, 11):
    raise Exception("Requires python 3.11")
from typing import Optional, Self
from functools import cached_property

"""
Until some of the self-type issues with mypy are better sorted out,
use of Self is minimal.

https://github.com/python/mypy/labels/topic-self-types
"""

from toy_crypto.nt import Modulus as Modulus  # noqa: E402
from toy_crypto.nt import is_modulus, mod_sqrt  # noqa: E402
from toy_crypto.utils import lsb_to_msb  # noqa: E402


"""
This is more complicated because I unwisely attempted to make this work both
for elliptic curves defined over the reals (for the drawings) and for curves
defined over integer fields.
"""


[docs] class Curve: def __init__(self, a: int, b: int, p: int) -> None: """Define a curve of the form :math:`y^2 = x^3 + ax + b \\pmod p`.""" self._p: Modulus = Modulus(p) self._a: int = a self._b: int = b if self.is_singular(): raise ValueError(f"{self} is singular") if not is_modulus(self.p): raise ValueError("Bad modulus p") self._pai: Optional[Point] = None # This assumes (without checking) that the curve has good parameters # and that a generator (base point) has been chosen correctly/ self._order = (self.p + 1) // 2 @property def a(self) -> int: """The 'a' of :math:`y^2 = x^3 + ax + b \\pmod p`.""" return self._a @property def b(self) -> int: """The 'b' of :math:`y^2 = x^3 + ax + b \\pmod p`.""" return self._b @property def p(self) -> Modulus: """The 'p' of :math:`y^2 = x^3 + ax + b \\pmod p`.""" return self._p def is_singular(self) -> bool: return (4 * self._a**3 + 27 * self._b * self._b) % self._p == 0
[docs] @cached_property def PAI(self) -> "Point": """Point At Infinity: the additive identity.""" if self._pai is None: self._pai = Point(0, 0, self) self._pai._is_mutable = False self._pai._is_pai = True return self._pai
@property def order(self) -> int: """The order of the group.""" return self._order def __repr__(self) -> str: # There is probably a nice way to do with with # format directives, but I'm not going to dig # into those docs now. if self._a < 0: ax = f"- {-self._a}x" else: ax = f"+ {self._a}" if self.b < 0: b = f"- {-self._b}x" else: b = f"+ {self.b}" return f"y^2 = x^3 {ax} {b} (mod {self._p})"
[docs] def compute_y(self, x: int) -> Optional[tuple[int, int]]: "Returns pair of y values for x on curve. None otherwise." a = self._a b = self._b p = self._p y2: int = (pow(x, 3, p) + ((a * x) % p) + b) % p roots = mod_sqrt(y2, p) if len(roots) != 2: raise ValueError("x is rootless") return roots[0], roots[1]
def point(self, x: int, y: int) -> "Point": return Point(x, y, self)
[docs] class Point: """Point on elliptic curve over finite field.""" def __init__(self, x: int, y: int, curve: Curve) -> None: """Create a mutable point on a curve.""" self._x: int = x self._y: int = y self._curve = curve # We are creating a normal point, so we set these self._is_mutable: bool = True self._is_pai = False if not (isinstance(self._x, int) and isinstance(self._y, int)): raise TypeError("Points must have integer coordinates") self._x %= self._curve.p self._y %= self._curve.p if not self.on_curve(): raise ValueError("point not on curve") @property def x(self) -> int: return self._x @property def y(self) -> int: return self._y @property def curve(self) -> Curve: return self._curve @property def is_zero(self) -> bool: """True if point at infinity""" return self._is_pai
[docs] def on_curve(self) -> bool: """True if point is on the curve (including point at infinity).""" if self._is_pai: return True x = int(self._x) y = int(self._y) a = int(self.curve.a) b = int(self.curve.b) p = self._curve.p # breaking this down for debugging lhs = pow(y, 2, p) rhs = (pow(x, 3, p) + a * x + b) % p return lhs == rhs
# define P + Q; -P; P += Q; P - Q; P == Q def __add__(self: Self, Q: Self) -> Self: return self.add(Q) def __neg__(self) -> Self: return self.neg() def __iadd__(self: Self, Q: Self) -> Self: return self.iadd(Q) def __sub__(self, Q: Self) -> Self: return self.__add__(Q.__neg__()) def __eq__(self, Q: object) -> bool: if not isinstance(Q, Point): return NotImplemented if not self and not Q: # both are 0 return True if self._x != Q.x or self._y != Q.y: # x's and y's don't match return False if self._curve != Q.curve: # They are defined for different curves return False return True def __bool__(self) -> bool: """P is True iff P is not the zero point.""" return not self._is_pai def __repr__(self) -> str: return f"({self.x}, {self.y})"
[docs] def neg(self: Self) -> Self: """Return additive inverse. :returns: Additive inverse :rtype: Point """ if self.is_zero: return self r = self.cp() r._y = self._curve.p - r._y return r
# I don't know how shallow a copy() is in Python, so
[docs] def cp(self: Self) -> Self: """Return a mutable copy""" c = type(self)(self._x, self._y, self._curve) c._is_pai = self._is_pai c._is_mutable = True return c
[docs] def iadd(self: Self, Q: Self) -> Self: """add point to self in place. The Point at Infinity is not mutable. But you can make a mutable copy with ``curve.PAI.cp()``. Or you could just use :meth:`Point.add`. :raises ValueError: if Q is not on its own curve :raises ValueError: if Q and self are on different curves :raises NotImplementedError: if self is not a mutable point. """ if not self._is_mutable: raise NotImplementedError("Point must be mutable") # The order of checking matters, as each check is seen as # as a fall through of prior checks if not isinstance(Q, Point): return NotImplemented # We don't do curve check on Q if Q is 0 # P + 0 = P if not Q: return self # if Q is not on its curve then there is something wrong with it. if not Q.on_curve(): raise ValueError("Point is not on curve") # 0 + Q = Q if not self: self._x, self._y = Q.x, Q.y self._curve = Q.curve self._is_pai = Q.is_zero return self # if Q is on a different curve, something bad is happening if self.curve != Q.curve: raise ValueError("Points on different curves") # P + P if self == Q: return self.idouble() # P + -P = 0 if self._x == Q.x: self._x, self._y = 0, 0 self._is_pai = True return self # Generics would be better than the abuse of type # narrowing that I am doing here to call different # _addition() methods self._x, self._y = self._nz_addition(Q) return self
[docs] def add(self: Self, Q: Self) -> Self: """Add points. :param Q: Point to add :type Q: Point :returns: Sum of Q and self :rtype: Point """ r = self.cp() r.iadd(Q) return r
[docs] def idouble(self) -> Self: """Double point in place. The Point at Infinity is not mutable. But you can make a mutable copy with ``curve.PAI.cp()`` or just use :meth:`Point.double`. :raises NotImplementedError: if self is not a mutable point. """ if not self._is_mutable: raise NotImplementedError( "Point must be mutable for in-place operation." ) if self.is_zero: return self xy = self._xy_double() if not xy: self._x = 0 self._y = 0 self._is_pai = True else: self._x, self._y = xy return self
[docs] def double(self: Self) -> Self: """Returns self + self""" if self.is_zero: return self.cp() P = self.cp() P = P.idouble() return P
def _xy_double(self) -> Optional[tuple[int, int]]: """(x, y) for x, y of doubled point. None if point at infinity :returns: new coordinates, x and y :rtype: Optional[tuple[int,int]] This does _some_ validity check of input values, but it might just return erroneous results the following conditions aren't met - self.curve.p is prime - self.curve is well defined - self.x, self.y are integers - self is on the curve - self is not the point at infinity """ if self._is_pai: return None if self._y == 0: return None m = self._curve.p top = ((3 * (self._x * self._x)) % m + self._curve.a) % m bottom = (2 * self.y) % m inv_bottom = pow(bottom, m - 2, m) s = top * inv_bottom % m x = (pow(s, 2, m) - 2 * self.x) % m y = (s * (self.x - x) - self.y) % m return (x, y)
[docs] def scaler_multiply(self, n: int) -> "Point": """ Returns n * self. :warning: This algorithm exposes n to timing attacks. """ n = n % self.curve.order sum = self.curve.PAI.cp() # additive identity doubled = self for bit in lsb_to_msb(n): if bit == 1: sum += doubled doubled = doubled.double() # toil and trouble return sum
def _nz_addition(self, Q: Self) -> tuple[int, int]: """returns x, y over finite field Z_p""" if self._is_pai or Q.is_zero: raise ValueError("this is for non-zero points only") m = self.curve.p # have the modulus handy # The following breaks up the point addition math into # gory details and steps. This helped in debugging. # s = (Q.y - self.y) / (Q.x - self.x) # = top/bot # = top * inv_bot # # And we do our mod p reductions at every opportunity bottom = Q.x - self.x # because p is prime, we can use a^{p-2} % p to compute inverse of a inv_bot = pow(bottom, m - 2, m) top = (Q.y - self.y) % m s = top * inv_bot % m s2 = (s * s) % m # x = (s^2 - Px) - Qx x = (s2 - self.x) - Q.x x %= m # y = s(Px - x) - Qy y = s * (self.x - x) - self.y y %= m return x, y