Source code for toy_crypto.rsa

from toy_crypto.nt import lcm, modinv

_DEFAULT_E = 65537


[docs] def default_e() -> int: """Returns the default public exponent, 65537""" return _DEFAULT_E
[docs] class PublicKey: def __init__(self, modulus: int, public_exponent: int) -> None: """Public key from public values.""" self._N = modulus self._e = public_exponent @property def N(self) -> int: """Public modulus N.""" return self._N @property def e(self) -> int: """Public exponent e""" return self._e
[docs] def encrypt(self, message: int) -> int: """Primitive encryption with neither padding nor nonce. :raises ValueError: if message < 0 :raises ValueError: if message isn't less than the public modulus """ if message < 0: raise ValueError("Positive messages only") if not message < self._N: raise ValueError("Message too big") return pow(base=message, exp=self._e, mod=self._N)
def __eq__(self, other: object) -> bool: """True when each has the same modulus and public exponent. When comparing to a PrivateKey, this compares only the public parts. """ if isinstance(other, PublicKey): return self.e == other.e and self.N == other.N return NotImplemented
[docs] class PrivateKey: def __init__(self, p: int, q: int, pub_exponent: int = _DEFAULT_E) -> None: """RSA private key from primes p and q. This does not perform any sanity checks on p and q. It is your responsibility to ensure that p and q are prime :raises ValueError: if e is not coprime with lcm(p - 1, q - 1). """ self._p = p self._q = q self._e = pub_exponent self._N = self._p * self._q self._pubkey = PublicKey(self._N, self._e) self._dP = modinv(self._e, p - 1) self._dQ = modinv(self._e, (self._q - 1)) self._qInv = modinv(self._q, self._p) try: self._d = self._compute_d() except ValueError: raise ValueError("p, q, and e are incompatible with each other ") @property def pub_key(self) -> PublicKey: """The public key corresponding to self. The public key does not contain any secrets. """ return self._pubkey @property def e(self) -> int: """Public exponent.""" return self._e def __eq__(self, other: object) -> bool: """True iff keys are mathematically equivalent Private keys with internal differences can behave identically with respect to input and output. This comparison will return True when they are equivalent in this respect. When compared to a PublicKey, this compares only the public part. """ if isinstance(other, PrivateKey): return self.pub_key == other.pub_key if isinstance(other, PublicKey): return self.pub_key == other return NotImplemented def _compute_d(self) -> int: λ = lcm(self._p - 1, self._q - 1) try: return modinv(self.e, λ) except ValueError: raise ValueError("Inverse of e mod λ does not exist")
[docs] def decrypt(self, ciphertext: int) -> int: """Primitive decryption.""" if ciphertext < 1 or ciphertext >= self.pub_key.N: raise ValueError("ciphertext is out of range") # m = pow(base=ciphertext, exp=self._d, mod=self._N) # but we will use the CRT # version comes from rfc8017 §5.1.2 m_1 = pow(ciphertext, self._dP, self._p) m_2 = pow(ciphertext, self._dQ, self._q) # I need to review CRT to see what this is for h = ((m_1 - m_2) * self._qInv) % self._p m = m_2 + self._q * h return m