Source code for toy_crypto.rsa
from toy_crypto.nt import lcm, modinv
_DEFAULT_E = 65537
[docs]
def default_e() -> int:
"""Returns the default public exponent, 65537"""
return _DEFAULT_E
[docs]
class PublicKey:
def __init__(self, modulus: int, public_exponent: int) -> None:
"""Public key from public values."""
self._N = modulus
self._e = public_exponent
@property
def N(self) -> int:
"""Public modulus N."""
return self._N
@property
def e(self) -> int:
"""Public exponent e"""
return self._e
[docs]
def encrypt(self, message: int) -> int:
"""Primitive encryption with neither padding nor nonce.
:raises ValueError: if message < 0
:raises ValueError: if message isn't less than the public modulus
"""
if message < 0:
raise ValueError("Positive messages only")
if not message < self._N:
raise ValueError("Message too big")
return pow(base=message, exp=self._e, mod=self._N)
def __eq__(self, other: object) -> bool:
"""True when each has the same modulus and public exponent.
When comparing to a PrivateKey, this compares only the public parts.
"""
if isinstance(other, PublicKey):
return self.e == other.e and self.N == other.N
return NotImplemented
[docs]
class PrivateKey:
def __init__(self, p: int, q: int, pub_exponent: int = _DEFAULT_E) -> None:
"""RSA private key from primes p and q.
This does not perform any sanity checks on p and q.
It is your responsibility to ensure that p and q are prime
:raises ValueError: if e is not coprime with lcm(p - 1, q - 1).
"""
self._p = p
self._q = q
self._e = pub_exponent
self._N = self._p * self._q
self._pubkey = PublicKey(self._N, self._e)
self._dP = modinv(self._e, p - 1)
self._dQ = modinv(self._e, (self._q - 1))
self._qInv = modinv(self._q, self._p)
try:
self._d = self._compute_d()
except ValueError:
raise ValueError("p, q, and e are incompatible with each other ")
@property
def pub_key(self) -> PublicKey:
"""The public key corresponding to self.
The public key does not contain any secrets.
"""
return self._pubkey
@property
def e(self) -> int:
"""Public exponent."""
return self._e
def __eq__(self, other: object) -> bool:
"""True iff keys are mathematically equivalent
Private keys with internal differences can behave identically
with respect to input and output. This comparison will return
True when they are equivalent in this respect.
When compared to a PublicKey, this compares only the public part.
"""
if isinstance(other, PrivateKey):
return self.pub_key == other.pub_key
if isinstance(other, PublicKey):
return self.pub_key == other
return NotImplemented
def _compute_d(self) -> int:
λ = lcm(self._p - 1, self._q - 1)
try:
return modinv(self.e, λ)
except ValueError:
raise ValueError("Inverse of e mod λ does not exist")
[docs]
def decrypt(self, ciphertext: int) -> int:
"""Primitive decryption."""
if ciphertext < 1 or ciphertext >= self.pub_key.N:
raise ValueError("ciphertext is out of range")
# m = pow(base=ciphertext, exp=self._d, mod=self._N)
# but we will use the CRT
# version comes from rfc8017 §5.1.2
m_1 = pow(ciphertext, self._dP, self._p)
m_2 = pow(ciphertext, self._dQ, self._q)
# I need to review CRT to see what this is for
h = ((m_1 - m_2) * self._qInv) % self._p
m = m_2 + self._q * h
return m