.. include:: ../common/unsafe.rst RSA ============== .. py:module:: toy_crypto.rsa :synopsis: Some primative RSA classes Imported with:: import toy_crypto.rsa Let's see a simple example, from the original publication describing the RSA algorithm. This will require the text decoding scheme used then which is in :py:func:`toy_crypto.utils.Rsa129.decode`. .. testcode:: import toy_crypto.rsa as rsa from toy_crypto.utils import Rsa129 # From the challenge itself modulus=114381625757888867669235779976146612010218296721242362562561842935706935245733897830597123563958705058989075147599290026879543541 pub_exponent=9007 ctext=96869613754622061477140922254355882905759991124574319874695120930816298225145708356931476622883989628013391990551829945157815154 # We have since learned p and q p=3490529510847650949147849619903898133417764638493387843990820577 q=32769132993266709549961988190834461413177642967992942539798288533 priv_key = rsa.PrivateKey(p, q, pub_exponent = pub_exponent) pub_key = priv_key.pub_key assert pub_key.N == modulus decrypted = priv_key.decrypt(ctext) # This is a large int # Now the Rsa129 text decoder ptext = Rsa129.decode(decrypted) print(ptext) .. testoutput:: THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE .. autoclass:: PublicKey :class-doc-from: both :members: :undoc-members: .. autoclass:: PrivateKey :class-doc-from: both :members: :undoc-members: .. autofunction:: default_e